Outline and preliminaries
Modelling distribution and growth: a generic model
Modelling distribution and growth: PK variants
Extensions/new developments
Summary and conclusions
References

Distribution and Growth

Mark Setterfield

New School for Social Research, New York

9th FMM International Summer School, Keynesian Macroeconomics and European Economic Policies

Berlin, 29 July - 3 August, 2024

Modelling distribution and growth: a generic model Modelling distribution and growth: PK variants Extensions/new developments Summary and conclusions References

Plan of lecture

- Preliminaries: some basic terms and concepts
- A generic model
- Post-Keynesian variants (Kalecki-Robinson tradition)
 - the neo-Keynesian model
 - the Kalecki-Steindl model
 - the Bhaduri-Marglin model
- Extensions and new developments
 - autonomous-demand-led exogenous growth
 - shifting equilibrium, pseudo instability, and cyclical growth
 - monetary and financial determinants of growth
 - debt-financed consumption spending and the accumulation of household debt
 - wage inequality
 - technical change and the supply side
- Summary and conclusions

Modelling distribution and growth: a generic model Modelling distribution and growth: PK variants Extensions/new developments Summary and conclusions References

Some preliminaries

- ▶ Distribution of *what*? opportunity, wealth, **income**
- Among whom? gender, race, class
- How measured size distribution (Gini, Theil indices; Palma ratio etc.), functional distribution (wages vs. profits)

Modelling distribution and growth: a generic model Modelling distribution and growth: PK variants Extensions/new developments Summary and conclusions References

Some preliminaries (cont.)

Why study distribution and growth?

Predominant answer: role of distribution in growth process

- ► Endogenous (adjusting) variable) variable, that facilitates movement into steady-state equilibrium
 - neo-Keynesian models (Robinson, Kaldor, Pasinetti)
- Exogenous variable determinant of steady-state equilibrium configuration
 - profit-led (classical PE)
 - wage-led (Kaleckian Dutt, Lavoie)
 - wage- or profit-led (Bhaduri-Marglin)

Modelling distribution and growth: a generic model Modelling distribution and growth: PK variants Extensions/new developments Summary and conclusions References

Some preliminaries (cont.)

BUT:

- Distribution important in its own right
- Focus on growth process ≠ advocacy of hyper-expansion
 - e.g., de-growth or zero growth how achieved? Implications for distribution?

ALSO - doesn't growth affect distribution?

 Yes, but at higher frequency (short cycles vs secular (long-term) growth)

Model foundations

- Assume two-class economy (workers, capitalists)
- Assume Leontieff production technology
- Assume closed economy with no fiscally-active government sector, all consumption funded by current income
 - investment the only (potential) source of autonomous demand
- ► Then ...

Basic accounting identity:

$$wN + \Pi \equiv Y \equiv C_W + C_\Pi + I$$

From $Y \equiv wN + \Pi$:

$$1 \equiv \frac{wN}{Y} + \pi$$

$$\Rightarrow \pi = 1 - wa \tag{1}$$

where $\pi \equiv \Pi/Y$ and $a \equiv N/Y$

Also from $Y \equiv wN + \Pi$:

$$\frac{Y}{K} \equiv \frac{wN}{K} + r$$

$$\Rightarrow r \equiv \frac{Y}{K} - \frac{wY}{K} \cdot \frac{N}{Y}$$

$$\Rightarrow r = \frac{Y}{K} (1 - wa)$$

$$\Rightarrow r = \frac{Y}{K_u} \cdot \frac{K_u}{K} (1 - wa)$$

$$\Rightarrow r = \frac{\pi u}{v}$$
(2)

where $u \equiv K_u/K$ and $v \equiv K_u/Y = K/Y_p$

Note that:

a) If
$$u = \bar{u}_n = 1$$
:

$$r = \frac{\pi}{v} = \frac{1}{v}(1 - wa)$$

$$\Rightarrow \frac{dr}{dw} = -\frac{a}{v} < 0$$

Result: classical wage-profit frontier – strict trade-off between *w* and *r*

b) If
$$u \neq \bar{u}_n = 1$$
:
$$r = \frac{\pi u}{v} = \frac{u}{v}(1 - wa)$$

$$\Rightarrow \frac{dr}{dw} = \frac{\partial r}{\partial \pi} \cdot \frac{d\pi}{dw} + \frac{\partial r}{\partial u} \cdot \frac{du}{dw}$$

$$\Rightarrow \frac{dr}{dw} = -u\frac{a}{v} + \frac{1}{v}(1 - wa) \cdot \frac{du}{dw}$$

Result: No strict trade-off between w and r

Outline and preliminaries

Modelling distribution and growth: a generic model

Modelling distribution and growth: PK variants

Extensions/new developments

Summary and conclusions

References

Model foundations (cont.)

Two important lessons emerge, even at this early stage:

- ► Importance of *closures*
- Importance of treatment of u

From
$$wN + \Pi \equiv C_W + C_\Pi + I$$
:
$$wN + \Pi = c_W wN + c_\Pi \Pi + I$$

$$\Rightarrow (wN - c_W wN) + (\Pi - c_\Pi \Pi) \equiv S = I$$

where c_w and c_Π are marginal propensities to consume from wages and profits, respectively.

Now assume $c_W=1$ (Kalecki – workers "spend what they get") and define $s_\Pi\equiv 1-c_\Pi$. It follows that:

$$s_{\Pi} \Pi = I$$

$$\Rightarrow s_{\Pi} \frac{\Pi}{K} = \frac{I}{K}$$

$$\Rightarrow r = \frac{1}{s_{\Pi}} g$$

$$\Rightarrow g^{s} = s_{\Pi} r \tag{3}$$

where $g \equiv I/K$ and $g^s = g|_{I=S}$

Note: g is both 'rate of accumulation' and (long-term) 'rate of growth', since:

$$v \equiv \frac{K_u}{Y}$$

$$\Rightarrow \hat{Y} - \hat{K}_u|_{u = \bar{u}} = 0$$

$$\Rightarrow \hat{Y} = \hat{K}_u|_{u = \bar{u}}$$

$$\Rightarrow \hat{Y} = g$$

To recap, we have so far established that:

$$\pi = 1 - wa \tag{1}$$

$$r = \frac{\pi u}{v} \tag{2}$$

$$g^s = s_{\Pi} r \tag{3}$$

We've now reached a 'fork in the road'.

Consider two additional (alternative) closures:

- ▶ $I \equiv S \Rightarrow g \equiv g^s$ classical Marxian model
- ▶ $I \not\equiv S$, g = g(.) Post-Keynesian model

Complete (generic) PK model can therefore be summarized as:

$$\pi = 1 - wa \tag{1}$$

$$r = \frac{\pi u}{v} \tag{2}$$

$$g^s = s_{\Pi} r \tag{3}$$

$$g = g(.) \tag{4}$$

Key in what follows will be:

- ▶ Different assumptions about u ($u = \bar{u}_n = 1$ vs. $u \neq \bar{u}_n = 1$)
- ▶ Different assumptions about g(.)

Joan Robinson's neo-Keynesian model

- Robinson (1956, 1962) can be considered the 'root' of contemporary PK theory of distribution and growth
- Robinson model is neo-Keynesian not Kaleckian (despite origins in Kalecki's two-sided relationship between investment and profits)
- ▶ A look at the structure and adjustment mechanisms of Robinson's model reveals nature of neo-Keynesian approach and (as will become clear) sets us up for investigation of subsequent Kaleckian developments

Assume $u = \bar{u}_n = 1$. Then:

$$r = \frac{\pi u}{v} = \frac{1}{v}(1 - wa) \tag{2}$$

This is the classical wage-profit frontier

Investment function:

$$g = g(r^e)$$

or:

$$g = \gamma_1 + \gamma_2 r^e \tag{5}$$

Complete model:

$$r = \frac{1}{v}(1 - wa) \tag{2}$$

$$g^s = s_\pi r \tag{3}$$

$$g = \gamma_1 + \gamma_2 r^e \tag{5}$$

To solve, set $r=r^e$ and assume Keynesian stability condition $s_{\pi}>\gamma_2$:

- Now suppose an improvement in animal spirits raises γ_1
- ► This will:
 - increase the rate of accumulation, which will ...
 - increase the equilibrium rates of growth and profit, and ...
 - ... decrease the equilibrium real wage

- What's happening is:
- ► *I* > *S* bids up prices in the goods market ...
- ... which lowers w ...
- ... which raises r ...
- ... which raises g

An aside: the inflation barrier

- Assume that w* is a minimum wage
- ► Then as $I > S \Rightarrow \uparrow P$ in the goods market ...
- ► ... $w < w^* \Rightarrow \uparrow W$ in the labour market
- ▶ So $\uparrow P \Rightarrow \uparrow W \Rightarrow \uparrow P$ etc.
- Nominal dynamic wage-price inflationary spiral

Neo-Keynesians versus Kaleckians

- ▶ How "truly" Keynesian is the Robinson model?
 - it's demand-led
 - ▶ BUT excess demand in the goods market resolved by price adjustment – and hence real wage adjustment, and hence change in the distribution of income
 - distribution is the adjusting variable that enables the model to 'get into' equilibrium ...
 - ightharpoonup ... and necessarily so, because $u=\bar{u}_n=1$ prevents alternative quantity adjustment channel
- These observations/criticisms are the fundamental point of departure for Kaleckians

Neo-Keynesians versus Kaleckians (cont.)

- ▶ If the complaint with the Robinson model is that it relies on price adjustment in the goods market ...
- ightharpoonup ... and if this is inevitable because $u=\bar{u}_n=1$ prevents quantity adjustment ...
- ... then the solution is simple: relax the assumption that $u = \bar{u}_n = 1$

Neo-Keynesians versus Kaleckians (cont.)

- This is the basis of Kaleckian theory, which treats u as variable
- Note: transition from neo-Keynesian to Kaleckian theory is analytically simple (relax $u = \bar{u}_n = 1$)
- ▶ But the consequences are profound:
 - investment function modified
 - (important) relationship between distribution and growth transformed
- ► And the behavioural basis for treating *u* as variable remains controversial

The Kaleckian model

In the Kaleckian model:

$$r = \frac{\pi u}{v} \tag{2}$$

is called the *pricing equation*.

This is because in the Kaleckian theory of the firm:

$$\Rightarrow 1=(1+ au)wa$$
 $\Rightarrow \pi=1-wa=rac{ au}{1+ au} \quad ext{and} \quad w=rac{1-\pi}{a}=rac{1}{(1+ au)a}$

 $P = (1 + \tau) Wa$

In other words, both π and w are now fixed, determined by the mark up (τ) chosen by firms in the pricing decision.

Recall also that with u now treated as variable:

$$r = \frac{\pi u}{v} = \frac{u}{v}(1 - wa) \tag{2}$$

This is just the reformulated classical wage-profit frontier derived earlier

But with $w = \frac{1-\pi}{a} = \frac{1}{(1+\tau)a}$, variation in u is now the only source of variation in r

Investment function:

$$g = g(u^e, r^e)$$

or:

$$g = \gamma + g_u u^e + g_r r^e$$

Note that since:

$$r = \frac{\pi u}{v} \tag{2}$$

it follows that:

$$u = \frac{vr}{\pi}$$

$$\Rightarrow u^e = \frac{vr^e}{\pi}$$

if firms form expectations consistently (but see Lavoie (2003); Dallery and van Treeck (2011))

Hence upon substitution, the investment function can be re-written as:

$$g = \gamma + \frac{g_u v}{\pi} r^e + g_r r^e$$

$$\Rightarrow g = \gamma + \left(g_r + \frac{g_u v}{\pi}\right) r^e \tag{6}$$

Complete model:

$$r = \frac{\pi u}{v} = \frac{u}{v}(1 - wa) \tag{2}$$

$$g^s = s_\pi r \tag{3}$$

$$g = \gamma + \left(g_r + \frac{g_u v}{\pi}\right) r^e \tag{6}$$

To solve, once again set $r=r^e$ and assume Keynesian stability condition $s_{\pi}>g_r+\frac{g_uv}{\pi}$:

- lacktriangle Now suppose an improvement in animal spirits raises γ
- This will:
 - increase the rate of accumulation, which will ...
 - increase the equilibrium rates of growth and profit, and ...
 - ... increase the equilibrium capacity utilization rate, with the real wage (distribution of income) unchanged

- ► What's happening is:
- I > S increases sales and production in the goods market ...
- ... which raises u ...
- ... which raises r ...
- ... which raises g

Neo-Keynesians versus Kaleckians again

- Note, then, that having relaxed the assumption that $u = \bar{u}_n = 1$, we've gone from:
 - price adjustment in the Robinson model to
 - quantity adjustment in the Kaleckian model
- Or, in other words, from:
 - exogenous capacity utilization and endogenous distribution (Robinson model) to
 - exogenous distribution and endogenous capacity utilization (Kaleckian model)
- ► These orthogonal dimensions of adjustment need not be treated as mutually exclusive, of course (Lavoie, 2010)

The paradox of costs

- Suppose now that we increase the real wage (i.e., decrease the profit share $\pi = 1 wa$)
- ► This involves increasing the costs of production
- BUT in the Kaleckian model, r will rise (as, too, will g and u)
- ► This is the (in)famous paradox of costs
- So how does it work?

No trickery is involved here. Hence note that:

$$g^* = \frac{s_{\pi}\pi\gamma}{(s_{\pi} - g_r) - g_u v}$$

$$\Rightarrow \frac{dg^*}{d\pi} = \frac{-s_{\pi}\gamma g_u v}{[(s_{\pi} - g_r) - g_u v]^2} < 0$$

$$r^* = \frac{\pi\gamma}{(s_{\pi} - g_r) - g_u v}$$

$$\Rightarrow \frac{dr^*}{d\pi} = \frac{-\gamma g_u v}{[(s_{\pi} - g_r) - g_u v]^2} < 0$$

$$u^* = \frac{v\gamma}{(s_{\pi} - g_r) - g_u v}$$

$$\Rightarrow \frac{du^*}{d\pi} = \frac{-(s_{\pi} - g_r)\gamma v}{[(s_{\pi} - g_r) - g_u v]^2} < 0$$

Since if $s_{\pi} > g_r + \frac{g_u v}{\pi}$ (the Keynesian stability condition) and $\frac{g_u v}{\pi} > 0$, it must be that:

$$s_{\pi} > g_r + \frac{g_u v}{\pi} > g_r \Rightarrow s_{\pi} - g_r > 0$$

Notice that by contrast in the Robinson model:

$$g^* = rac{s_\pi \gamma_1}{s_\pi - \gamma_2}$$
 $r^* = rac{\gamma_1}{s_\pi - \gamma_2}$
 $\Rightarrow rac{dg^*}{d\pi} = rac{dr^*}{d\pi} = 0$

No influence of distribution on (equilibrium) growth and profit rates.

- ► Key result of Kaleckian model: economy unequivocally wage-led. Redistribution towards wages:
 - enriches workers (higher w)
 - enriches capitalists at the same time (higher r)
 - ightharpoonup and improves macro performance in the process (higher u, g)
- Win-win-win capitalism!
- And of obvious (massive) contemporary significance
- Or is it too good to be true?

- ► First, note that paradox of costs is a macro result that might be true in principle but difficult (impossible?) to achieve in practice
 - it starts with an increase in w
 - do individual firms have the macro insights to accept this?
 - or will they resist it as a seeming attack on their profitability?

- Second, paradox of costs may be wrong in principle
 - it emerges from a "re-tooling" of the Robinsonian investment function
 - but does this re-tooling "get the investment function right"?
- ► This brings us to third generation PK theory, associated with Bhaduri and Marglin (1990); Marglin and Bhaduri (1990)

Bhaduri-Marglin versus the Kaleckians

Bhaduri-Marglin - if $u \neq \bar{u}_n = 1$ so that:

$$r = \frac{\pi u}{v}$$

and:

$$g = g(r) \tag{7}$$

as in Robinson, then we can write:

$$g = g(\pi, u)$$

The influence of (now assumed variable) u on g is already captured by an essentially Robinsonian investment function!

Bhaduri-Marglin versus the Kaleckians

According to Bhaduri-Marglin, the Kaleckian investment function:

$$g = g(r, u)$$

overcounts the influence of u on g, which enters twice (directly and then again, indirectly, via r)

Bhaduri-Marglin versus the Kaleckians

BUT – this "accounting" argument is controversial. In the Kaleckian tradition:

- ➤ A strong accelerator effect (i.e., large effect of u on g) is to be expected:
 - firms operating objective is to keep pace with the expansion of the goods market, so as to maintain their market share and hence degree of monopoly power
- An *independent* accelerator effect (i.e., separate from *r*) is appropriate:
 - the influence of u and r on g are qualitatively different: u causes g (accelerator effect) whereas r facilitates g (source of finance) (Mott and Slattery, 1994)

But suppose we go along with Bhaduri-Marglin and see where this leads

The Bhaduri-Marglin model

As we've already seen, point of departure for Bhaduri-Marglin involves replacing the Kaleckian investment function:

$$g = g(r, u)$$

with:

$$g = g(\pi, u) \tag{8}$$

NOTE: implicit form of Bhaduri-Marglin function is deliberate: not all functional forms create full suite of Bhaduri-Marglin results

The Bhaduri-Marglin model (cont.)

Complete model:

$$r = \frac{\pi u}{v} = \frac{u}{v}(1 - wa) \tag{2}$$

$$g^s = s_\pi r \tag{3}$$

$$g = g(\pi, u) \tag{8}$$

To solve, set $g = g^s = g^*$:

The Bhaduri-Marglin model (cont.)

$$\frac{s_{\pi}\pi u^*}{v}=g(\pi,u^*)$$

where u^* denotes the equilibrium rate of capacity utilization.

Can't solve explicitly for u^* , but by totally differentiating our equilibrium solution, we get:

$$\frac{du^*}{d\pi} = \frac{g_{\pi} - \frac{s_{\pi}u^*}{v}}{\frac{s_{\pi}\pi}{v} - g_{u}}$$

The paradox of costs again

If the Keynesian stability condition holds, so that:

$$\frac{s_{\pi}\pi}{v}-g_{u}>0$$

Then:

$$\frac{du^*}{d\pi^*} > 0$$
 if $g_{\pi} > \frac{s_{\pi}u^*}{v}$

or:

$$\frac{du^*}{d\pi^*} < 0$$
 if $g_{\pi} < \frac{s_{\pi}u^*}{v}$

- Effect of redistribution on model outcomes now ambiguous
- What's going on what happened to the paradox of costs?!
- ► Clue: everything turns on the responsiveness of the investment function to the profit share (g_{π})
- So let's consider explicit (linear) form of Bhaduri-Marglin investment function
- ► (WARNING: 'traditional' linear g(.) (with positive coefficients) does **not** deliver full suite of Bhaduri-Marglin results (Blecker, 2002) so following exercise is good for intuition only!)

Write:

$$g = g(\pi, u) = \gamma + g_{\pi}\pi + g_{u}u$$

Since:

$$r = \frac{\pi u}{v} \Rightarrow u = \frac{vr}{\pi}$$

it follows that:

$$g = g(\pi, u) = \gamma + g_{\pi}\pi + \frac{g_{u}v}{\pi}r$$

Can now see that g varies directly with π via "intercept" term, and indirectly with π via "slope" term.

- ▶ In event of $\pi' < \pi$:
- g₁ captures "intercept effect" (ceteris paribus)
- g₂ captures "slope effect" (ceteris paribus)
- ► Final result ambiguous

The ambiguity so-noted creates *three* different cases in the Bhaduri-Marglin model

To see this, first note that since:

$$r^* = \frac{\pi u^*}{v}$$

it follows that:

$$\frac{dr^*}{d\pi} = \frac{\partial r^*}{\partial \pi} + \frac{\partial r^*}{\partial u^*} \frac{du^*}{d\pi} = \frac{u}{v} + \frac{\pi}{v} \frac{du^*}{d\pi}$$
$$\Rightarrow \frac{dr^*}{d\pi} = \frac{u}{v} \left(1 + \frac{\pi}{u^*} \frac{du^*}{d\pi} \right)$$

Meanwhile, the equilibrium condition $g = g^s = g^*$ means that:

$$g^* = \frac{s_\pi \pi u^*}{v}$$

so that:

$$\frac{dg^*}{d\pi} = \frac{\partial g^*}{\partial \pi} + \frac{\partial g^*}{\partial u^*} \frac{du^*}{d\pi} = \frac{s_\pi u^*}{v} + \frac{s_\pi \pi}{v} \frac{du^*}{d\pi}$$
$$\Rightarrow \frac{dg^*}{d\pi} = \frac{s_\pi u}{v} \left(1 + \frac{\pi}{u^*} \frac{du^*}{d\pi} \right)$$

So in fact, everything turns on the sign and size of:

$$\frac{\pi}{u^*} \frac{du^*}{d\pi}$$

which is the *elasticity of u** *w.r.t.* π . Hence if:

$$\frac{du^*}{d\pi} > 0 \Rightarrow \frac{\pi}{u^*} \frac{du^*}{d\pi} > 0$$

then:

$$\frac{dg^*}{d\pi}, \frac{dr^*}{d\pi} > 0$$

The economy is now unequivocally profit-led!

Meanwhile, if:

$$\frac{du^*}{d\pi} < 0$$

and:

$$\left|\frac{\pi}{u^*}\frac{du^*}{d\pi}\right| > 1$$

(u^* is π -elastic) then:

$$\frac{dg^*}{d\pi}, \frac{dr^*}{d\pi} < 0$$

The economy is unequivocally *wage-led* again (as in the Kaleckian model). The paradox of costs is restored!

Finally, if:

$$\frac{du^*}{d\pi} < 0$$

but:

$$\left|\frac{\pi}{u^*}\frac{du^*}{d\pi}\right|<1$$

(u^* is π -inelastic) then:

$$\frac{dg^*}{d\pi}, \frac{dr^*}{d\pi} > 0$$

The economy is neither unequivocally wage- nor profit-led.

To summarize (and use Bhaduri-Marglin's terminology):

$\partial u^*/\partial \pi$	Signs of partial derivatives		
	-	-	+
$\partial g^*/\partial \pi$	_	+	+
$\partial r^*/\partial \pi$	-	+	+
Terminology	Cooperative stagnationist	Conflictual stagnationist	Exhilarationist

Bhaduri-Marglin: a summing up

- ► Bhaduri-Marglin claim to offer a *generalization* of the distribution-growth relationship
- ▶ BUT don't forget controversy about behavioural basis of model (is $g = g(\pi, u)$ "correct"?)
- Similar results can be obtained by other means:
 - saving out of wages
 - open-economy effects
- But these also controversial:
 - are models with saving out of wages stock-flow consistent?
 - world is a closed economy

A selected menu of new topics

Various extensions and new developments merit exploration, including (but not limited to):

- Autonomous-demand-led growth
- Shifting equilibrium, pseudo instability, and cyclical growth
- Monetary and financial determinants of growth
- Debt-financed consumption spending and the accumulation of household debt
- Wage inequality
- Technical change and the supply side

Autonomous-demand-led growth

- ► Motivation: revival of supermultiplier analysis by Sraffians (Freitas and Serrano, 2015)
- ▶ In Sraffian supermultiplier model, level of output (but not g) is wage-led
- ➤ This has given rise to new Kaleckian interpretation of wage-led growth in presence of autonomous demand (Allain, 2015; Lavoie, 2016)

Autonomous-demand-led growth (cont.)

Key innovation:

$$S = s_{\pi}\Pi - A$$

so that $\Pi=0\Rightarrow S=-A<0$ – i.e., capitalists dis-save to fund autonomous consumption (A)

Autonomous-demand-led growth (cont.)

Now assume I = S and standardize by K:

$$\left. \frac{I}{K} \right|_{I=S} = \frac{s_{\pi}\Pi}{K} - \frac{A}{K}$$

$$\Rightarrow g^s = s_{\pi}r - a$$

where
$$a = \frac{A}{K}$$

Note that:

$$a=\frac{A}{K}$$

$$\Rightarrow \dot{a} = a(\hat{A} - \hat{K})$$

$$\Rightarrow \dot{a} = a(\bar{g}_A - g)$$

We now have a new dynamic, driving a new adjusting variable (a), towards a new steady-state condition $\dot{a}=0 \Leftrightarrow \bar{g}_A=g$

To bring all this into focus, consider the simplified Kaleckian model:

$$g = g(u)$$

$$g^s = s_{\pi}r - a = \frac{s_{\pi}\pi u}{v} - a$$

and now suppose that the profit share of income, π , falls

Result:

$$\blacktriangleright$$
 $\downarrow \pi \Rightarrow \uparrow u, g \dots$

$$ightharpoonup ... g > \bar{g}_A \Rightarrow \dot{a} < 0 ...$$

• ... until
$$a = a'$$
, where $g = g^* = \bar{g}_A$ (and $u = u^* = \bar{u}_n$)

Interpretation:

- $ightharpoonup \Delta\pi$ has no effect on *steady-state* outcomes ...
- ... so no influence of distribution on growth specifically, no paradox of costs?
- Alternatively:
 - ightharpoonup since $\downarrow \pi \Rightarrow g > \bar{g}_A$ during traverse ...
 - ightharpoonup ... so that average value of g exceeds \bar{g}_A in 'long run' ...
 - ... growth remains wage-led: paradox of costs survives
- Note connection to 'history versus equilibrium' theme (focus on traverse). Which brings us to ...

Shifting equilibrium, pseudo instability, and cyclical growth

- ► Motivation: 'history versus equilibrium' theme
- Key innovation: state of long-term expectations ('animal spirits') influenced by short-term expectational disappointment (Kregel, 1976)
 - since animal spirits influence parameters of investment function ...
 - ... and thus the value of the equilibrium rate of growth ...
 - ... disequilibrium will now affect the position of equilibrium giving rise to 'shifting equilibrium' analysis

Consider the following simplified Kaleckian model:

$$g = \gamma_1 + \gamma_2 u^e$$

$$g^s = s_\pi \pi u$$

$$u^{e} = u_{-1}$$

$$\dot{\gamma}_1 = \alpha(u - u^e) = \alpha(u - u_{-1})$$
 , $\alpha > 0$

Starting at at g^* , \bar{u}_n , assume initial $\uparrow \gamma_1$ to γ_1' :

- ▶ $g > g^s$ at A $\Rightarrow \uparrow u \Rightarrow$ movement to B: Keynesian stability condition holds
- ▶ BUT $u > u_1 \Rightarrow \dot{\gamma}_1 > 0 \Rightarrow$ movement to C: shifting equilibrium

- Economy 'chasing a moving target' may not converge
- Result: 'pseudo-instability'
 - Keynesian stability condition holds ...
 - \blacktriangleright ... but increases (decreases) in g and u self-reinforcing
- Invites addition of turning point mechanisms
- ► E.g., 'second differences matter': $\Delta u > 0$ but
- $\Delta u \Delta u_{-1} = \Delta^2 u < 0 \Rightarrow \downarrow \gamma_1$ and vice versa
- Result cyclical growth

Note also that following initial $\uparrow \gamma_1$:

- Cyclical growth may occur around (never realized) value of $u = \bar{u}_n$
- ► Keynesian stability condition holds, but movement from A to C means $\frac{dg}{du} > \frac{dg^s}{du}$
- Harrodian criticisms addressed!

- Motivation(s): 'financialization'; PK growth real-side only –
 'Hamlet without the Prince' (Kregel, 1985)
- ▶ Post-1980, much more attention to monetary and financial influences on distribution and growth
- Developments nicely summarized in Hein (2014, chpts.9 & 10)

Key innovation: introduction of third claimant (rentiers) on total income

$$Y \equiv wN + \Pi$$

$$\Pi = \Pi_F + iD$$

$$\Rightarrow Y = wN + \Pi_F + iD$$

Hence:

$$S = s_W wN + s_\pi \Pi_F + s_R iD$$

Now assume
$$s_W = 0, s_\pi = 1, 0 < s_R < 1$$
. Then:

$$S = \Pi_F + s_R iD$$

$$\Rightarrow S = \Pi - iD + s_R iD$$

$$\Rightarrow S = \Pi - (1 - s_R)iD$$

Now assume I = S and standardize by K:

$$\frac{I}{K}\Big|_{I=S} = \frac{\Pi}{K} - (1 - s_R)i\frac{D}{K}$$
$$\Rightarrow g^s = \frac{\pi u}{K} - (1 - s_R)i\lambda$$

where
$$\lambda = \frac{D}{K}$$

Note:

- - debt dynamics now part of the picture
 - $\lambda = 0 \Leftrightarrow \hat{D} = g$ required for steady state
 - steady-state debt:income ratio sustainable?
- With $g^s = \frac{\pi u}{v} (1 s_R)i\lambda$:
 - $ightharpoonup \uparrow i, \lambda \Rightarrow \downarrow g^s \dots$
 - ... so *ceteris paribus*, rentier claims boost *C* ...
 - ... but other things aren't equal ...

Now have:

$$g=\gamma+g_{u}u+g_{r}r_{F}$$
 where $r_{F}=rac{\Pi-iD}{K}=r-i\lambda$ $\Rightarrow g=\gamma+g_{u}u+g_{r}(r-i\lambda)$

$$\Rightarrow g = (\gamma - g_r i \lambda) + g_u u + g_r r$$

So $\uparrow i, \lambda \Rightarrow \downarrow g$: ceteris paribus, rentier claims reduce I

So, if rentier claims on income rise, does economy improve or deteriorate? Depends:

- ▶ If firms 'hoard' retained earnings $(g_r \text{ low})$ and rentiers free-spending $(s_R \text{ low})$, g and u increase (dominance of C channel)
- If firms invest retained earnings $(g_r \text{ high})$ and rentiers hoard $(s_R \text{ high})$, g and u decline (dominance of I channel)

Finally, note that we can replace iD with ρE , where:

- ► E denotes shareholders' equity
- \triangleright ρ denotes dividend rate earned by shareholders

Provides basis for interpreting rentier claims in terms of 'shareholder value' movement (extraction of profit from firms at expense of their capital development)

- Motivated by coincident rise of inequality and household borrowing
- Large literature on this theme
- ▶ PK models linking inequality and household borrowing to distribution and growth include (*inter alia*) Kapeller and Schütz (2015); Setterfield and Kim (2017, 2020)

Key innovation(s):

$$C = C_W + C_R + \dot{D}$$

where:

$$\dot{D} = \beta (C^T - C_W)$$
 , $\beta > 0$

and:

$$C^T = \eta C_R$$

i.e., 'keeping up with the Joneses'. (Note: this can be augmented with 'running to stand still' effect)

ALSO - how do households service debt? Like a tax:

$$C_W = c_W(WN - iD_R)$$

Or like an expense:

$$C_W = c_W WN$$

and:

$$S_W = (1 - c_W)WN - iD_R$$

Central results:

- 'Consumption-driven, profit-led growth', or paradox of inequality:
 - redistribution towards profit boosts growth ...
 - but not for Bhaduri-Marglin reasons (primacy of I channel)
 - ▶ instead, inequality boosts C because of effects on household borrowing
 - financial sustainability?

- ► Manner in which households service debts matters. When treated as expense:
 - paradox of inequality 'super charged': even transfer of income due to debt servicing boosts C
 - debt dynamics inverted: quadratic debt dynamics yield two steady-state debt:income ratios, with the *larger* of these now the *stable* solution – further challenge to financial sustainability

Wage inequality

- Motivation: much of the observed increase in inequality due to increased wage inequality
- Key innovation distinction between:
 - production workers actually engage in production process
 - supervisory workers (managers) oversee production process

Wage inequality (cont.)

In PK models of distribution and growth, this innovation incorporated in different ways:

- Two-class models, with capitalist-managers who claim part of total wage income
- Three-class models
 - capitalists, supervisory workers, production workers
 - wage bill divided between supervisory workers and production workers

Wage inequality (cont.)

Example: Palley (2017) two-class model

Assume ϕ_W is production workers' share of WN and (because $s_W \neq 0$ and a la Pasinetti (1962)) δ_W their share of Π . Then:

$$S = S_W + S_K = s_W(\phi_W WN + \delta_W \Pi) + s_K([1 - \phi_W]WN + [1 - \delta_W]\Pi)$$

$$\Rightarrow \frac{S}{K} \frac{K}{K_u} \frac{K_u}{Y} = s_W(\phi_W[1-\pi] + \delta_W \pi) + s_K([1-\phi_W][1-\pi] + [1-\delta_W]\pi)$$

$$\Rightarrow \frac{S}{K} \frac{v}{u} = s_W(\phi_W[1-\pi] + \delta_W \pi) + s_K([1-\phi_W][1-\pi] + [1-\delta_W]\pi)$$

Wage inequality (cont.)

Now assume I = S. Then:

$$\frac{I}{K}\bigg|_{I=S} = g^{s} = [s_{W}(\phi_{W}[1-\pi] + \delta_{W}\pi) + s_{K}([1-\phi_{W}][1-\pi] + [1-\delta_{W}]\pi)]\frac{u}{v}$$

Key result: $\uparrow \phi_W, \delta_W \Rightarrow \downarrow g^s$ if $s_W < s_K$

- Economy can still be profit-led
- ▶ BUT redistribution of wage *or* profit income towards production workers with $\pi = \bar{\pi}$ expansionary (via *C* channel)
- New twist on 'wage-led growth' theme (worker-led growth!)

Technical change and the supply side

- Motivation: PK models only study impact of distribution on growth via the demand side
- Key innovation impact of distribution on growth via the supply side. Possible because:
 - **Potential** (Harrodian natural) rate of growth, y_p , affected by labour productivity growth
 - labour productivity growth affected by distribution if technical change is induced (by profit squeeze) and factor biased (labour-saving)
- May give rise to growth that is profit-led in medium run, but wage-led in long-run steady state, where $g=y_p$ (Rada et al., 2021)

Suppose that:

$$g = g(\pi, \mathbf{Z})$$
 , $g_{\pi} > 0$

$$\pi=1-\omega=1$$
 — wa

where ω is the wage share of income

Then $\uparrow w \Rightarrow \uparrow \omega \Rightarrow \downarrow \pi \Rightarrow \downarrow g$: growth profit-led (a la Bhaduri-Marglin)

Now write:

$$y_p = -\hat{a} + \bar{n} = q + \bar{n}$$

$$q = \gamma \omega$$
 , $\gamma > 0$

$$\hat{w} = q + \delta(g - y_p)$$

Note that in the steady state:

$$g = y_p$$

(constant rate of employment)

$$\Rightarrow \hat{w} = q = -\hat{a}$$

which renders constant the distribution of income ($\omega=wa$, $\pi=1-wa$)

BUT – now assume $\Delta \mathbf{Z} \Rightarrow \uparrow g \Rightarrow g > y_p$ initially:

First,
$$\Delta \mathbf{Z} \Rightarrow \uparrow g \Rightarrow g' > y_p^*$$

Then, $g' > y_p^* \Rightarrow \hat{w} > q \Rightarrow \uparrow \omega$ has two effects:

- $\downarrow \pi \Rightarrow \downarrow g \text{ (profit-led growth effect)}$
- ↑ $q \Rightarrow \uparrow y_p$ (induced, factor-biased technical change effect)

- ▶ RESULT steady-state equilibrium restored when $g = y_p$, consistent with lower g (i.e., g < g') and higher y_p (i.e., $y_p > y_p^*$)
- ► In other words,
 - ▶ although growth profit-led in medium run ...
 - ... steady-state rate of growth increases in response to ↑ w − wage-led!
- ▶ Note consistency with Blecker (2016): growth more likely to be wage-led in long run

Summary and conclusions

- Even confining our attention to functional distribution of income, distribution-growth relationship complicated in PK models:
 - distribution can be endogenous (adjusting) variable (neo-Keynesian) ...
 - ... or exogenous cause of wage- or profit-led outcomes (Kaleckian, Bhaduri-Marglin) ...
 - ... or neither (e.g., steady-state supermultiplier models)
- Relationship between distribution and growth further complicated by extensions to basic (canonical) models

Summary and conclusions (cont.)

- ▶ In addition, distribution-growth relationship draws out controversy concerning treatment of *u* in macrodynamics
 - $u = \bar{u}_n = 1$ versus variable u
 - ▶ variable *u* a *necessary* condition for paradox of costs
 - but not a *sufficient* condition (Bhaduri-Marglin)
- All told, not surprising that distribution and growth remains a lively topic in PK analysis!

- Allain, O. (2015). Tackling the instability of growth: a Kaleckian-Harrodian model with an autonomous expenditure component. Cambridge Journal of Economics 39(5), 1351–1371.
- Bhaduri, A. and S. Marglin (1990). Unemployment and the real wage: The economic basis for contesting political ideologies. *Cambridge Journal of Economics* 14(4), 375–93.
- Blecker, R. A. (2002). Distribution, demand and growth in Neo-Kaleckian macro-models. In M. Setterfield (Ed.), The Economics of Demand-Led Growth, pp. 129–152. Cheltenham, UK: Edward Elgar Publishing.
- Blecker, R. A. (2016). Wage-led versus profit-led demand regimes: the long and the short of it. Review of Keynesian Economics 4(4), 373–390.
- Dallery, T. and T. van Treeck (2011). Conflicting claims and equilibrium adjustment processes in a stock-flow consistent macroeconomic model. Review of Political Economy 23(2), 189–211.
- Freitas, F. and F. Serrano (2015). The Sraffian supermultiplier as an alternative closure to heterodox growth theory. Technical report, Instituto de Economia, Universidade Federal do Rio de Janeiro (UFRJ).
- Hein, E. (2014). Distribution and Growth after Keynes: A Post-Keynesian Guide. Cheltenham, UK: Edward Elgar.
- Kapeller, J. and B. Schütz (2015). Conspicuous consumption, inequality and debt: The nature of consumption-driven profit-led regimes. Metroeconomica~66(1), 51-70.
- Kregel, J. A. (1976). Economic Methodology in the Face of Uncertainty: The Modelling Methods of Keynes and the Post-Keynesians. Economic Journal 86(342), 209–25.
- Kregel, J. A. (1985). Hamlet without the prince: Cambridge macroeconomics without money. American Economic Review 75, 133–139.
- Lavoie, M. (2003). Kaleckian effective demand and Sraffian normal prices: Towards a reconciliation. Review of Political Economy 15(1), 53–74.
- Lavoie, M. (2010). Surveying short-run and long-run stability issues with the Kaleckian model of growth. In M. Setterfield (Ed.), Handbook of Alternative Theories of Economic Growth,. Cheltenham, UK: Edward Elgar.

- Marglin, S. A. and A. Bhaduri (1990). Profit squeeze and Keynesian theory. In S. A. Marglin and J. B. Schor (Eds.), The Golden Age of Capitalism: Reinterpreting the Postwar Experience, pp. 153–186. Oxford: Oxford University Press.
- Mott, T. and E. Slattery (1994). The influences of changes in income distribution on aggregate demand in a Kaleckian model: stagnation versus exhilaration reconsidered. In P. Davidson and J. Kregel (Eds.), Employment. Growth and Finance. pp. 69–82. Aldershot: Edward Elgar.
- Palley, T. I. (2017, 03). Wage- vs. profit-led growth: the role of the distribution of wages in determining regime character. Cambridge Journal of Economics 41(1), 49-61.
- Pasinetti, L. L. (1962). Rate of profit and income distribution in relation to the rate of economic growth. Review of Economic Studies 29. 267–79.
- Rada, C., M. Santetti, A. Schiavone, and R. von Arnim (2021). Post-Keynesian vignettes on secular stagnation: From labor suppression to natural growth. Working Paper Series, Department of Economics, University of Utah 2021-05, University of Utah, Department of Economics.
- Robinson, J. (1956). The Accumulation of Capital. London: Macmillan.
- Robinson, J. (1962). Essays in the Theory of Economic Growth. London and Basingstoke: Macmillan.
- Setterfield, M. and Y. K. Kim (2017). Household borrowing and the possibility of 'consumption-driven, profit-led growth'. Review of Keynesian Economics 5(1), 43–60.
- Setterfield, M. and Y. K. Kim (2020). Varieties of capitalism, increasing income inequality, and the sustainability of long-run growth. Cambridge Journal of Economics 44(3), 559–582.