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Abstract

The last decades have seen a surge in measured top wealth inequality across
industrialized countries. The canonical random growth model with homogeneous
return distributions cannot explain the speed of this increase in aggregate top
inequality, since it generates too slow transitions in response to shocks. In contrast
to that, recent theoretical contributions attribute this rise to differential expected
returns to net wealth resulting from individual differences in innate ability (type
dependence) or wealth (scale dependence) (Gabaix et al., 2016). However, this result
on the theoretical possibility of differential returns coupled with aggregate evidence
is still in need of microlevel confirmation. We propose a parsimonious test for scale-
dependence that only needs wealth microdata and apply it to a newly comprised data
set on the richest Germans from a rich list in combination with survey data. Here
we show that the data at hand indeed suggests scale-dependent wealth accumulation
for the richest Germans. However, in contrast to this ”Data First“ interpretation,
we also show that this finding might be fully explained within plausible parameter
estimates by differential biases affecting the survey study and rich list, primarily
resulting from the equiprobable sampling used for the survey. We thus demonstrate
that the pre-analytic vision might heavily influence the inferences drawn from the
very same dataset, where the different interpretations imply estimates for the total
wealth of the richest that can differ by more than one order of magnitude. Our
results show that aggregate findings within scale-free systems such as the wealth
distribution of the richest might be spurious, when the sampling method does not
properly take their large degree of heterogeneity into account.
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1 Introduction
The last decades have seen a surge in measured top wealth inequality across industrialized
countries. The canonical random growth model with homogeneous return distributions
cannot explain the speed of this increase in aggregate top inequality, since it generates too
slow transitions in response to shocks. In contrast to that, recent theoretical contributions
attribute this rise to differential expected returns to net wealth resulting from individual
differences in innate ability (type dependence) or wealth (scale dependence) (Gabaix et al.,
2016). However, this result on the theoretical possibility of differential returns coupled
with aggregate evidence is still in need of microlevel confirmation. We propose a parsimo-
nious test for scale-dependence that only needs wealth microdata and apply it to a newly
comprised data set on the richest Germans from a rich list in combination with survey data.
Here we show that the data at hand indeed suggests scale-dependent wealth accumulation
for the richest Germans. However, in contrast to this ”Data First“ interpretation, we also
show that this finding might be fully explained within plausible parameter estimates by
differential biases affecting the survey study and rich list, primarily resulting from the
equiprobable sampling used for the survey. We thus demonstrate that the pre-analytic
vision might heavily influence the inferences drawn from the very same dataset, where the
different interpretations imply estimates for the total wealth of the richest that can differ
by more than one order of magnitude. Our results show that aggregate findings within
scale-free systems such as the wealth distribution of the richest might be spurious, when
the sampling method does not properly take their large degree of heterogeneity into account.

For the upper tail of empirical wealth distributions, there exists a wide-ranging consensus
that it can be described by a power law or Pareto-type distribution. Table 7 in Appendix B
summarizes some of the major studies on this distributional structure for the richest
for several countries and time periods. Judging from the evidence collected there, this
property of empirical wealth distribution seems very robust as it holds even in medieval
Hungary (Hegyi et al., 2007) or in ancient Egypt (Abul-Magd, 2002) and with respect to
different proxies for wealth. Power law distributions are seemingly spatially and temporally
ubiquitous. Power law tails might be found in the Western world, like in Austria, Canada,
Germany, Sweden, the UK and the US (Bach et al., 2011; Brzezinski, 2014; Castaldi
and Milaković, 2007; Coelho et al., 2005; Cowell, 2011; Drăgulescu and Yakovenko, 2001;
Eckerstorfer et al., 2016; Levy, 1998, 2003; Levy and Solomon, 1997), but they also hold for
less developed countries like China, Russia and India (Brzezinski, 2014; Ning and You-Gui,
2007; Sinha, 2006) and across varying time-frames.

Gabaix (2009) and Luttmer (2010) review various generating mechanisms for power laws.
Given its empirical universality, any generating mechanism for the emergence of such a
power law should also be based on a property that is common across the various considered
time-periods, countries and proxies for wealth. One such property that is common at
least across the different varieties of capitalism is the type of assets that the richest
individuals hold: assets that are continuously reinvested into the same asset class, that
is, speculative real-estate, stocks and other financial assets (Davies and Shorrocks, 2000;
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Wachter and Yogo, 2010).1 Thus, a random growth model featuring a multiplicative
component seems to be the most adequate candidate generating mechanism. The theory
of stochastic multiplicative processes to explain the emergence of power law tails traces
back to a long history (Champernowne, 1953; Simon, 1955; Wold and Whittle, 1957;
Simon and Bonini, 1958; Mandelbrot, 1960; Steindl, 1965; Kesten, 1973; Milaković, 2003;
Castaldi and Milaković, 2007) in reduced-form processes which, however, lack economic
microfoundations. This generating mechanism has recently gained traction again within
more economically motivated models of a partial and general equilibrium flavour which
endogenously generate power law tails in wealth distributions from stochastic capital
or asset accumulation (Levy, 2003; Levy and Levy, 2003; Nirei, 2009; Benhabib et al.,
2011; Toda, 2014; Piketty and Zucman, 2015; Hubmer et al., 2016; Aoki and Nirei, 2016;
Benhabib and Bisin, 2018).

The literature on random multiplicative growth has typically placed rather weak as-
sumptions on the return distributions governing the stochastic process. One important
exception is the assumption of a homogeneous return distribution or, put differently, an
equilibrating tendency for the expected, risk-adjusted rate of return. This is consistent
with the implications of (semi-strong) informationally efficient capital markets and the
notion that investor’s superior talent in either fundamental or technical analysis cannot
lead to excess returns over extended time-frames (Fama, 1965, 1970, 1991). Indeed, as
Levy (2003) and Levy and Levy (2003) show experimentally and through the use of Monte
Carlo simulations, the scope for differential talent is very limited in light of the Pareto
distribution in wealth: If one group of investors consistently outperforms another group
of less talented investors by only a tiny margin in terms of their expected returns,2 the
functional form of the emergent stationary distribution differs significantly from a Pareto
type and is concave on a double-logarithmic scale. We dub this hypothesis of homogeneous
return distributions “Theory First”.

In contrast to that, a much more recent strand of literature has challenged the homogeneity
hypothesis on theoretical and empirical grounds. Bach et al. (2017) and Fagereng et al.
(2018) find excess risk-adjusted returns to wealth portfolios for the richest individuals with
the latter finding also evidence for persistence in abnormal returns indicating persistent
heterogeneity in financial information and talent. From a more theoretical perspective,
Luttmer (2011) and Gabaix et al. (2016) build on the well-known flaw of random growth
models that they typically generate very slow transitions. The former puts this in terms of
the stationary distribution of assets with a much too high half-life of assets, while the latter
argues equivalently in terms of the rate of convergence to the new stationary distribution

1From an accounting standpoint, this continuous reinvesting is closely related to saving. Again, there
is a consensus in the literature that propensities to save are strongly positively correlated with (lifetime)
income or wealth (Dynan et al., 2004; Jappelli and Pistaferri, 2014). This also holds for entrepeneurial
households (Quadrini, 1999). As a major reason for this relationship, Deaton (2003) identifies credit
constraints that are only binding for low wealth households and individuals.

2They consider two Gaussian return distributions only differing in their expected value. If this expected
return only differs by one percentage-point or more, the stationary distribution is significantly different
from the Pareto type.
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in response to a parameter shock that is much too slow to account for the empirically
observed rise in top-level income inequality. Gabaix et al. (2016) and Jones and Kim
(2018) thus put forward the hypothesis of heterogeneous returns to explain the observed
rise in income and wealth inequality, where excess returns either are correlated with wealth
levels (“scale dependence”) or result from differential talent (“type dependence”). Within
(semi-strong) informationally efficient capital markets, scale-dependence can only occur
when the set of investment opportunities increases in wealth. The case of hedge funds and
some private banks seems to provide at least anecdotal evidence for this as hedge funds
typically require high minimum investment inlays (King and Maier, 2010), while some
private banks like JP Morgan Chase’s require their clients to be two-digit millionaires and
hold at least 10 million USD in investible assets (Glazer, 2016). With respect to type
dependence, Gabaix et al. (2016) circumvent the aforementioned problem identified in
Levy (2003) and Levy and Levy (2003) that differential talent is inconsistent with a Pareto
distribution by assuming that “high growth types” only stay in the high growth regime for
a limited amount of time and cannot return there. While this idea is theoretically very
appealing, it introduces another degree of freedom into any empirical investigation, that is,
the number of periods abnormal returns have to prevail for type-dependence to exist. In
addition to that, given our limited dataset without information on investor’s sophistication,
as discussed in Chapter 3, this notion of type-dependence is phenomenologically equivalent
to scale-dependence, since we cannot control for investor’s ability. Put differently, with
our dataset, we cannot empirically distinguish between the hypothesis that individuals are
rich because of their excess returns or the alternative hypothesis that they have excess
returns because they are rich. We will thus only focus on testing for scale dependence
and label this hypothesis “Data First”, as it was historically driven by puzzles posed
by the observed behaviour of top incomes in relation to the standard random growth model.

The remainder of this paper is organized as follows: Chapter 2 introduces a simple model
in the form of a stochastic partial differential equation that allows inferences on the
scale-dependence in the accumulation process from the observed stationary distribution.
Chapter 3 introduces the two samples and discusses our estimation procedure. The follow-
ing Chapter 4 presents our results and puts forward two mutually exclusive but plausible
explanations for the observed behaviour in the data. Chapter 5 concludes and discusses
implications of our results for further research.

2 Model
To inform our empirical investigation, we consider a parsimonious, reduced-form random
growth model introduced by Gabaix (1999). In particular, this reduced-form allows to
examine the role of scale-dependence for the tail exponent of the stationary distribution.
He shows that there are essentially two ingredients to generate power law distributions:
first, stochastic random growth and second, a reflecting boundary as a stabilizing force
for the process. It is a well known result that stochastic growth models need some kind
of stabilizing force to account for the empirically established power law behaviour in the
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top tail of wealth distributions. Stabilizing forces that were proposed in the literature
are reflecting boundaries, entry/exit-mechanisms and mean-reverting behaviour (Gabaix,
2009). For simplicity, we opt for the reflecting boundary. The basic mechanism boils down
to the statement that if wealth grows multiplicatively by stochastic factors and all wealth
levels are bounded away from a finite valued non-negative reflecting boundary, a power law
as the stationary distribution emerges from the process. Consider the Markov diffusion
with support over the real half-line (0,∞) for the wealth w of a typical, infinitely-lived
household or individual normalized by total wealth given by

dwt/wt = µ(w)dt+ σ(w)dBt, (1)

where µ is the mean growth rate of normalized wealth, σ its standard deviation and dBt

are Wiener increments. The reflecting boundary is introduced in the sense that for all
individuals with wi > wmin for a small wmin, equation (1) above applies, whereas all
wi ≤ wmin are set to wmin for all individuals i. As Gabaix (1999) shows and we rederive in
more detail in Appendix A, the stationary distribution of the right tail is that of a power
law, with the tail exponent α given by

α(γ, σ) = 1− 2γ(w)− γ̄
σ2(w) + w

σ2(w)
∂σ2(w)
∂w

, (2)

where γ̄ is the average wealth growth rate and γ(w) the (normalized) mean growth rate
for a given wealth level w. Expression (2) has intriguing and intuitive comparative statics
with respect to the degree of scale-dependence in both mean growth rates γ and variance
σ2. Whenever the expected (excess) mean growth rate γ(w) − γ̄ increases in wealth
levels, that is, positive scale-dependence with respect to average growth, the tail exponent
decreases and inequality goes up. In contrast to that, when variance exhibits positive
scale-dependence, ∂σ2(w)/∂w > 0, tail exponents tend up and system-wide inequality
decreases.

In particular, Zipf’s (1949) law with α = 1 is an interesting limit case for a situation without
any scale-dependence of neither a positive nor a negative type, that is, γ(w) = γ̄, ∀w ∈ R+,
and ∂σ2(w)/∂w = 0. These two conditions are typically called Gibrat’s law after the
seminal study by Gibrat (1931). As can be seen, in the given set-up, Gibrat’s law in growth
rates is a sufficient condition for Zipf’s law to hold in wealth levels. Córdoba (2008a,b)
proves that it is also a necessary condition. In our empirical analysis, we take the Zipfian
benchmark in the stationary distribution as an indication for scale-independence and
statistically significant deviations as evidence for the contrary. We also want to emphasize
another theorem in Gabaix (1999), namely, that the ensemble of distinct sets of wealth
levels each characterized by Zipf’s law can also be characterized by Zipf’s law. Thus,
finding a tail exponent of unity for different subsets of the upper tail of a particular wealth
distribution would indicate that the whole tail is characterized by the same power law
with this tail exponent of unity. By the argument above, this implies that if the random
growth process within each subset of the population is independent of scale, then the
random growth process for the whole population also has to be scale-independent.
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3 Data and Estimation
To test the hypothesis of scale-dependence, we examine the properties of two samples for
the upper tail of the German wealth distribution on two distinct scales. In particular, for
our methodology, we need two samples that exhibit power law right tails, whose covered
ranges do not overlap. We find these conditions fulfilled in two very different kinds of
samples, a rich list and a survey study.

3.1 The SOEP Sample
The Socio-Economic Panel (SOEP) conducted by the Deutsches Institut für Wirtschafts-
forschung is probably the most prominent source for German microdata. The 2002, 2007
and 2012 waves of this panel also include an item on personal and household wealth which
will be used in our analysis. Utilizing different weighing and imputation techniques for the
market value and for disaggregation to the individual value, the SOEP sample claims to be
representative of the whole German population - implying that each person or household
in Germany is chosen with equal probability (Frick et al., 2007). Assuming 82, 500, 000
to be the total number of individuals in Germany, the sampling ratio, therefore, is about
0.035 per-cent (Statistisches Bundesamt, 2017).

These three waves, however, do not include a single specific item for total personal wealth,
but rather for different asset classes. The total wealth used in the subsequent chapters is
therefore calculated as the sum of the value of financial assets (item PLC0329 ), the value
of property (item PLC0357 ), the value of commercial enterprises (item PLC0366 ) and
the value of tangible assets (item PLC0371 ) held by an individual, substracting the value
of debt from private individual credit (item PLC0422 ). The fact that the SOEP provides
named data (while obviously anonymized) also makes it possible to investigate the time
development of assets, in particular in terms of mobility and growth rates in the value of
wealth portfolios. Non-respondents for a particular asset class were completely taken out
of the sample which could be a source of bias. As these non-respondents typically, however,
were only non-respondent for a single asset-class, including them would probably be a
greater source of bias which is why this alternative was chosen. Furthermore, all values
are inflation-adjusted which implies that they are comparable between the sample periods.
The maximum, inflation-adjusted wealth level across all periods is about 70 million e, far
from the minimum wealth level in the manager magazin (mm) rich list we also consider.

3.2 The manager magazin Rich List
While the SOEP sample might provide a reasonable approximation to the actual distri-
bution of wealth for the majority of German individuals, wealth data from household
surveys becomes more inaccurate for the tails of the distribution (Davies and Shorrocks,
2000). Casual empiricism indeed suggests that the 70 million e as the maximum wealth
level in the SOEP is far from being “representative” for the richest individual in Germany.
To close this gap and to provide a second, non-overlapping sample on another scale, we
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consider a rich list for the richest German individuals. While having many drawbacks, the
use of rich lists is well established in the literature, particularly for countries like Germany,
where tax data does not exist or is not publicly available due to privacy regulations. The
German journal manager magazin provides a list of the 500 richest Germans for the years
2010− 2016. The sample does not overlap with the survey data, as the minimum wealth
level reported for all years for the rich list is about double the maximum wealth level in
the survey.

The data itself, however, suffers from several issues, such as not consistently distinguishing
between household, family and individual wealth. Furthermore, the data for 2012 is
missing completely which proves problematic especially for investigations of growth rates
that necessitate the comparison of two subsequent sample periods. Another important
problem is that the manager magazin data only reports the wealth data on a two decimal
digit level in billions. In particular, the data likely exhibits so called heaping effects
or “digit-preference”, as the data seems abnormaly clustered at increments of 50 mil-
lion e (Heitjan and Rubin, 1991; Schneeweiß et al., 2010). Since we cannot assume that
this “digit-preference” is uniformly distributed across the reported data,3 the heaping
errors will in general not cancel out and thus, lead to biased estimators. We will discuss this
issue in more detail in the “Theory First” section on the interpretation of results. Finally,
the manager magazin staff did not disclose any information on the detailed data collection
procedure. In personal correspondence, they only stated that the reported wealth levels
are based on data available in official archives, from lawyers and asset managers as well as
the respective individuals themselves. Thus, it proves difficult to judge the reliability of
the provided data. Notwithstanding all these limitations, the manager magazin sample is
the only available source for named data in this very high wealth region for Germany and
therefore seemingly the only way to get a fuller grasp on the German wealth distribution
in question. To bring the SOEP and the manager magazin data together, it is assumed
that the manager magazin rich lists report personal wealth only. Judging from the actual
lists, this seems to be the case for the vast majority of given wealth levels, as, for most of
the cases, only a single name is reported for a particular wealth observation. Whenever the
respective wealth shares in a family or household are reported or publicly available, the
data is also disaggregated on a personal level for each individual in this household or family.4

3.3 Estimation
Our empirical analysis is primarily based on the parameter estimates of the power law
distributions in the upper tail of the SOEP and the manager magazin sample. We interpret
these as the stationary distributions resulting from a general random-growth process as
described in equation (1). The assumption that the empirically observed state coincides
with the stationary state of the distribution for time t → ∞ is frequently challenged,
though. Especially Gabaix et al. (2016) and Luttmer (2011) show that the convergence to

3In fact, the largest wealth levels seem typically reported with much higher accuracy.
4 All rich lists by the manager magazin were digitalized manually and are available upon request.
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a new stationary distribution from a shock e.g. to the variance of the underlying random
growth process is extremely slow. Given slow convergence, it is questionable whether the
empirical distribution truly reflects the dynamics of an underlying random growth process
or if it is merely in a transient state to the new asymptotic state. However, as Levy and
Levy (2003) show, while convergence to the asymptotic distribution is indeed very slow for
these types of random growth processes, the convergence to the approximate power law is
much faster. Thus, inference from this distribution approximating the stationary state
seems indeed possible to the underlying dynamics of the data-generating process.

The estimation of the tail exponent of the power law is done by Maximum Likelihood
Estimation (MLE). Clauset et al. (2009) show that an MLE fit is the least biased method to
estimate the characteristic exponent for power laws, compared to OLS methods or fitting a
linear function onto the power law on a double-logarithmic scale.5 Even though we estimate
from a discrete dataset, we estimate the power law for its continuous analogue, as the
analytical results for differential biases in the results section are based on the continuous
version.6 Our results are not materially sensitive to the choice between the discrete and
continuous estimator. Standard errors are determined from the Gaussianity of the MLE,
as shown by De Haan and Resnick (1997). For the determination of the minimum wealth
level wmin from which on the power law applies in the SOEP sample, we use the method
by Clauset et al. (2009) which is the standard procedure in the field. There, it is also
shown that this method is outperforming other possible procedures, such as minimizing
the Bayesian Information Criterion (BIC). It is based on the goodness-of-fit of a power
law distribution for an increasing sample-size starting including decreasing wealth levels
from the maximum onwards (reverse order statistic) according to the Kolmogorov-Smirnov
(KS) test. According to this procedure, these levels are reached for wmin = 280, 000 for the
2002 sample, wmin = 200, 000 for the 2007 period and wmin = 180, 000 for the 2012 sample.
All estimates are plausible, as it seems reasonable that from about a wealth of 200, 000 e
onwards, exclusively or at least primarily multiplicative returns apply.7 Since the rich list
should, by our theoretical assumptions, be completely characterized by a power law, we
do not estimate wmin but rather take it directly from the data. Therefore, wmin is chosen
as the minimal observed observation for each period. This is also advantageous in another
sense, as these wmin levels ensure that the power laws always span at least two orders of
magnitude. Two orders of magnitude are usually considered to be a minimum requirement
for a power law to be present at all (Stumpf and Porter, 2012). The only adjustment
made was to neglect all of the lowest wealth observations for which there existed less than
three observations to avoid any bias by the truncation of the sample to only 500 individuals.

5Cf. also Goldstein et al. (2004) for a more rigorous analysis of different graphical methods and their
respective shortcomings compared to an MLE.

6The MLE is introduced and discussed in Appendix H in more detail.
7The lower tail of the wealth distribution is well approximated by an exponential type, in particular

the Gamma distribution. The Gamma distribution also emerges as the combinatorially most likely or
entropy-maximizing distribution, when both additive and multiplicative processes together (an arithmetic
mean constraint and a constraint on the logarithmic mean) are assumed (Milaković, 2003). The minimum
here can, therefore, also be interpreted as the threshold level after which the growth process of wealth is
multiplicative according to equation (1). Material available upon request.
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Finally, with respect to the growth rates, we would expect them to follow a particular
distribution, the Laplace distribution. This expectation is purely based on the fact that
we approximate wealth growth by the logarithmic difference in wealth levels, that is,
gi,t = log(wi,t)− log(wi,t−1) as the growth rate of individual i between periods t and t− 1.
It can be shown that log(w) follows an exponential distribution if w follows a power law
and the difference between two exponentially distributed variables is Laplacian (Kotz et al.,
2001). This (possibly asymmetric) Laplacian distribution of returns r has a probability
density function given by

f(r,m, σl, σr) =


= 1
A
e
−| r−m

σl
| for r < m

= 1
A
e−|

r−m
σr
| for r ≥ m,

(3a)

(3b)

where m is a location parameter with m > 0, σl, σr > 0 denote the scale parameters for the
region greater or smaller than m and with A = σr + σl to normalize the distribution.The
symmetric Laplacian is a special case of the asymmetric Laplacian in equations (3a) and
(3b) with σ = σl = σr resulting in a Probability Density Function (PDF) given by

f(r,m, σ) = 1
2σe

−| r−m
σ
|.

4 Results

4.1 Distributional Results
For both the SOEP as well as the manager magazin samples, the empirical Complementary
Cumulative Distribution Functions (CCDFs) after the estimated thresholds wmin seem
to be approximately linear on a double-logarithmic scale, indicating indeed power law
behaviour for the richest individuals within the German wealth distribution in both samples
(cf. Appendices C and D). The parameter estimations for the power law region within the
SOEP are given in Table 1.

SOEP 2002 2007 2012
α̂ 1.3144 1.0978 1.2982
S.E. 0.0423 0.0324 0.0354
ŵmin 280,000 200,000 180,000
wmax 70,550,000 30,600,000 16,000,000
N 961 1,260 1,332

Table 1. Summary of estimates for the power law region of the SOEP. wmin and wmax in e deflated
with index year 2010. Minimum determined by the method of Clauset et al. (2009). α estimates by MLE,
standard errors for the α estimate determined by Gaussianity of the Hill estimator (DeHaan and Resnick,
1997).

Two peculiarities stand out here: First, the parameter estimates for the characteristic
exponent together with the associated standard errors indicate that Zipf’s law with α = 1
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can be rejected for all sample periods at 95% confidence. Secondly, the maximum wealth
level for all years is implausibly low and not anywhere near the minimum wealth levels
reported in the manager magazin. The former result will be the foundation for our “Data
First” interpretation in the subsequent subchapter, the latter is evidence for our “Theory
First” interpretation in the subchapter after.

Consider now the estimates for the manager magazin sample in Table 2. As can be clearly
seen, the α̂ MLEs are for all years very close to the Zipfian benchmark, except for 2016.
This, however, is also the only year for which wealth held in foundations or charity organi-
zations was included in the estimated wealth levels, according to the manager magazin
staff. Thus, the tail exponents for the differing years do not exactly measure the same
quantity and are thus not comparable which is why we mostly discard 2016 in our analysis.
Note that the inequality for the whole sample period seems to be very high compared
to other studies who typically estimate characteristic exponents above unity. Indeed,
for all studies described there that are concerned with contemporary Western countries,
the estimated characteristic exponent is much higher. Only the cases of contemporary
Russia and India (Brzezinski, 2014; Sinha, 2006) and of medieval Hungary (Hegyi et al.,
2007) show comparable degrees of inequality in their samples. It is noteworthy that such
a result contradicts the conventional wisdom that wealth in Germany is more equally
distributed than, for example, in the UK or the US.8 This huge degree of inequality might
be partially explainable by the large relevance of intergenerational wealth transmission
in Germany. Indeed, casual empiricism suggests that the manager magazin sample lists
primarily persons whose families trace back to a long dynastic history, for example the
Quandt family with Susanna Klatten as its member and richest woman in all sample
periods. Also, about 70% of large and old German corporations are still controlled by the
owning families (Bergfeld and Weber, 2011). Therefore, the conjecture seems justified that
the high degree of inequality in the “richest club” for Germany is partially attributable to
its high relevance of dynastic wealth accumulation, especially for the rich.

mm 2010 2011 2013 2014 2015 2016
α̂ 0.9983 0.9863 1.0999 0.9874 0.9358 0.7615
S.E. 0.00447 0.0442 0.0495 0.0443 0.0419 0.0341
ŵmin 0.2 0.2 0.25 0.25 0.25 0.2
wmax 17.1 19 23.95 31 26.5 30
N 499 498 494 497 500 500

Table 2. Summary of estimates for the manager magazin. wmin and wmax in billion e deflated with
index year 2010. α estimates by MLE, standard errors for the α estimate determined by Gaussianity of
the Hill estimator (De Haan and Resnick, 1997).

Since our primary goal is to examine possible scale-dependence in the random growth
process, we also look at the growth rate distributions in more detail. To make results
comparable between the manager magazin and the SOEP, we construct the growth rates

8 Cf. e.g. Milanovic (2016) for reference.
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for a 5 year increment. Several non-parametric tests reject the null hypothesis of distribu-
tional equivalence between the two samples for both considered periods but fail to reject
it within the sample between periods (cf. Appendix E). Thus, the (tadmittedly limited)
evidence seems to suggest that the growth process is time-invariant but scale-dependent
between samples. The expected parametric distribution, the Laplacian, also is seemingly
approximating the data very well.9 This is indicated by the fact that the growth rate
distributions display the characteristic “tent-shape” on a semi-logarithmic scale which can
be seen in Figures 1 to 4. Notice that the presence of non-Gaussian growth rate distribu-
tions alone indicates the fact that the growth process is not independent in time which
would induce, by the Central Limit Theorem, Gaussian growth rates. In fact, of course,
stochastically multiplicative growth processes like the one in equation (1) responsible for
the emergence of the power law in levels are path-dependent and thus violate independence.
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Figure 1. Growth Rates mm 2010/15.
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Figure 2. Growth Rates mm 2011/16.
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Figure 3. Growth Rates SOEP 2002/07.
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Figure 4. Growth Rates SOEP 2007/12.

Note: 12 bins each. Fits by MLE.

The parameter estimates for the Laplacian distribution strengthen the impression by
the non-parametric tests. The estimates for m and σ do not vary too much within the
respective samples but are vastly different between the considered sample types. While
the location parameter m is not significantly different from zero in the SOEP sample, zero
is not included into the 95% confidence interval for both considered periods which implies
that for both periods, m is significantly higher than zero on a 5% significance level. Thus,

9The standard procedure in the field to test for the presence of a Laplacian distribution is to fit a
Subbotin or Exponential Power Distribution to the data (Subbotin, 1923). Since the Subbotin distribution
includes the Laplacian as a special case for the shape parameter κ = 1, this fit provides a convenient test.
As we show in Appendix F, a shape parameter of unity cannot be rejected for all considered distributions.
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the average person or family that was a member of the ´´richest club” in Germany for
these two periods benefited in terms of absolute wealth. Also, the dispersion parameter
σ is significantly lower than the analogue in the power law regime of both considered
intervals in the SOEP sample.

Estimated Parameter m̂ σ̂

manager magazin Sample

2010/15 0.102355 0.145786
S.E. (2010/15) 0.00904839 0.0095956
2011/16 0.0824254 0.131932
S.E. (2011/16) 0.0116694 0.00819033

SOEP

2002/07 0.0280287 0.370958
S.E. (2002/07) 0.0144158 0.00768654
2007/12 0.0214543 0.374504
S.E. (2007/12) 0.0148786 0.00755357

Table 3. Summary of estimates for the Laplacian distribution for power law regime of the SOEP sample
and the mm sample.

4.2 Data First
Taking the data and estimation results at face value would imply limited evidence for the
existence of scale-dependence within the wealth accumulation process. If we assume the
process (1) to hold, an upwards deviations from the Zipfian benchmark for the stationary
distribution implies that at least one of either negative scale dependence of the mean
growth rate γ or positive scale-dependence of the risk-term ∂σ2(w)/∂w > 0 has to exist.
Indeed, this seems to be the case for the within-sample growth process of the survey study
but not the one governing the rich list, as in the former, the tail exponent is significantly
higher than the Zipfian benchmark which, however, cannot be rejected in the latter.
Approaching scale-dependence within-sample from the estimate for the tail exponent bears
the significant advantage that the analysis is not based on a partition of the empirical
growth rate distributions in wealth levels that is ultimately arbitrary to compare mean
and variance of returns.

Notice that both types of growth processes - the scale-dependent one for the relatively
lower wealth levels and the scale-independent one for the highest wealth levels - are entirely
consistent with the conventional wisdom on the existence of a trade-off between risk and
return. The rationale for this tradeoff is simply that competitive financial markets should
lead to a (tendency for the) equalization for risk-adjusted returns (Milaković, 2003). For
example, the canonical intertemporal capital asset pricing model by Merton (1973) for
stock markets suggests that the conditional expected excess return should grow linearly
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with its conditional variance.10 This is obvious for the highest wealth levels, where, by
the above argument, both the first and the second moment of the expected growth rate
distribution resulting from the stochastic growth process are independent of scale and
thus, the risk-preferences seem to be approximately identical for all individuals within
this group. For the SOEP power law regime, on the other hand, a risk-return trade off
implying both ∂γ(w)/∂w > 0 and ∂σ2(w)/∂w > 0, is still consistent with α̂ > 1. For an
upwards deviation with respect to the Zipfian benchmark like in the parameter estimates,
it only has to hold that the positive scale-dependent effect with respect to the variance
has to dominate the positive scale-dependence with respect to the expected value. More
formally, assuming the risk-return tradeoff to hold, α > 1 implies

w

σ2(w)
∂σ2(w)
∂w

> 2γ(w)− γ̄
σ2(w) . (4)

Thus, the within-sample scale-dependence we infer from the tail exponents for the SOEP
sample is consistent with the notion that efficient financial markets should lead to equi-
librating risk-adjusted returns for wealth portfolios. Within-sample scale-dependence
can thus be simply explained by heterogeneous risk-preferences. This, however, does
no longer hold for between-sample comparisons. Given the fact that Zipf’s law seems
to hold for the highest wealth regions in the manager magazin sample but not within
the survey study, the data at face-value seem to imply i) that scale-dependence exists
between samples given the difference in tail exponents and ii) that after a certain threshold,
this scale-dependence ceases to exist, as Zipf’s and consequently Gibrat’s law holds for
the richest. This impression is confirmed by the differences in expected returns and the
measured variance. Both the non-parametric tests as well as the parameter estimates for
the Laplacian growth rate distribution indicate that while the expected returns increase
between the samples with increasing wealth, the variance for the growth process decreases.
It thus seems that the excess returns of the richest individuals in Germany cannot be
explained by a higher risk-preference of this subset of the population, as this should be
reflected in the variance of returns to net wealth.

The “Data First” interpretation thus suggests not only scale-dependence but scale-
dependence that cannot be explained by heterogeneous risk-preferences alone. To explain
the estimation results within the framework of a random-growth process, we need to
assume that financial markets are not fully competitive in a conventional notion. This
would suggest that investors’ talent or the increased set of possibilities that comes with
being very wealthy enables the richest to persistently beat the market and achieve above-
average risk-adjusted returns. Notice that this finding also is at odds with the conventional

10 There is, however, an ongoing debate on whether this relationship can be established empirically
(French et al., 1987; Campbell, 1987; Nelson, 1991; Campbell and Hentschel, 1992; Harvey, 2001; Goyal
and Santa-Clara, 2003; Brandt and Kang, 2004; Ghysels et al., 2005; Bali and Peng, 2006; Andersen et al.,
2006; Guo and Whitelaw, 2006; Lundblad, 2007; Bali, 2008; Gonzales et al., 2012). While most of the
studies find at least weak support for the risk-return trade-off for various time frames and markets, the
debate seems to have now shifted to the precise functional form of this relationship - as opposed to the
linear one implied by the CAPM.
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wisdom on risk-preferences stating that, empirically, the degree of risk-aversion decreases
in wealth levels which should lead to higher variances in returns to portfolios with higher
net worth (Guiso et al., 1996; King and Leape, 1998; Calvet and Sodini, 2014).

4.3 Theory First
The estimates of the tail exponent for the manager magazin and SOEP data likely suffer
from two different potential sources of bias: The equiprobable sampling of the SOEP
makes it very unlikely (indeed close to impossible) that the maximum wealth levels are
included. To give some intuition on the orders of magnitude involved here, the proba-
bility of including a unique maximum wealth level for the SOEP sampling ratio under
equiprobable sampling would be 0.035 per-cent and thus would be essentially equal to
zero. Adding to this problem are concerns of social desirability biases, in particular that
the very rich tend to not respond to survey requests. As the probability of non-response
is therefore positively correlated to the wealth levels, it is likely that the SOEP suffers
from differential non-response (Kennickell and Woodburn, 1997; Eckerstorfer et al., 2016).
These two considerations imply that the SOEP data likely suffer from undersampling,
that is, the maximum wealth levels are not included at all in the sample. In contrast to
that, the manager magazin sample is a carefully selected sample particularly aimed at
describing the richest individuals in Germany. Thus, one could expect that undersampling
is not that much of a problem for this sample. However, as the manager magazin staff
relies on public records for their rich list, they likely underestimate the actual wealth
levels for the richest 500 Germans due to privacy considerations and tax avoidance that is
particularly pronounced for the wealthiest (Alstadsæter et al., 2019). Thus, the manager
magazin data are expected to suffer from underreporting, not undersampling. In somewhat
more colloquial terms, the upwards bias in the SOEP data is due to the fact that the
richest are not included at all, while the upwards bias in the manager magazin data is
caused by the fact that the richest are not included with the full extent of their wealth.

However, since the data on undersampling or underreporting rates are impossible to
estimate by the very nature of the problem, we consider three stylized scenarios on how
strongly these two phenomena bias the estimate for the tail exponent: i) unanimous
(proportional) underreporting, ii) undersampling and iii) differential (proportional) un-
derreporting. First, we consider the case of unanimous (proportional) underreporting,
that is, all respondents only report a fraction r of their wealth. Call this fraction the
response-rate. As we show in Appendix H, this leads to an unbiased estimator and thus,
underreporting would not be a problem for the estimation of inequality in this stylized
scenario. Consider secondly the case that is likely pertaining the estimation for the
SOEP data - undersampling. In our stylized scenario, this would correspond to a case
where the upper p-quantile is non-respondent and the wealth distribution is therefore
p-truncated. As we show in Appendix H, this asymptotically leads to a (strong) upwards
bias for the MLE of the tail exponent. Finally, we also consider the case of differential
(proportional) underreporting. Since unanimous (proportional) underreporting leads to
unbiased estimators, the only source of upwards bias would be differential underreporting
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of the richest in the sample. For this, we consider the case where the upper p-quantile
of the wealth distribution only reports a fraction of their wealth with a reporting rate of
r. Indeed, for all p ∈ (0, 1) and r ∈ (0, 1), this leads asymptotically to upwards biased
estimators. Thus, in the case of underreporting, the differential behaviour of the richest
compared to the relatively less wealthy is necessary to cause upwards biases in our stylized
scenario.

Finally, we consider the relative bias for the two cases of differential undersampling and
underreporting. For this, we plot the upwards deviation from the theoretically expected tail
exponent of α = 1 for p ∈ (0, 0.2) as a realistic quantile of affected individuals and different
reporting rates. The case of r = 0 obviously corresponds to the case of undersampling.
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Figure 5. Upwards bias resulting from different combinations of reporting rates r and fractions of affected
wealth levels p compared to the theoretically expected α of unity for Zipf’s law.

As can be seen in Figure 5, we get the somewhat intuitive result that the relative bias is
decreasing in the reporting rate r, since for a smaller r, a larger fraction of wealth is not
reported. For r = 1, this corresponds to the initial distribution and the bias is thus 0 for
all p. However, what might be not that intuitive is the relative strength of the bias by
undersampling compared to underreporting. If we allow only a fraction of 25% of wealth
to be reported by the richest p-quantile, this leads to a disproportionately much smaller
bias on the estimator. This result leads us to conclude that indeed the estimations from
the manager magazin sample are probably much less (upwards) biased compared to the
estimates from the SOEP sample.

Differential reporting is, however, also completely consistent with downwards biased
estimates. For this, consider the fact that the tendency to round or the “digit-preference”
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is probably much more pronounced for lower levels of wealth than for the more salient,
higher levels. Indeed, it seems quite likely that data collection from the manager magazin
staff suffers from a salience bias , that is, much more effort is put into acquiring information
on the richest individuals (Balz et al., 2014). Thus, as a more diverse set of sources is
considered, the reported wealth levels are probably higher on average for this salient
richest set. Since the r > 0 parameter only describes the relative reporting rate of the
highest p quantile relative to the remaining 1− p share of the population, r > 1 is entirely
possible. This is the case, whenever the effect of the salience bias outweighs the effects of
tax avoidance and other sources of underreporting. Consider the stylized scenario, when
the richest 100 individuals are considered to be a salient set which corresponds to p ≈ 0.2.
Assume further that the “true” distribution is governed by Zipf’s law. If we estimate the
(relative) reporting rates r for the estimated tail exponents and the given p = 0.2, the
pattern in Table 4 emerges.

Implied Reporting Rates r
manager magazin 2010 2011 2013 2014 2015 2016

α̂ 0.9983 0.9863 1.0999 0.9874 0.9358 0.7615
p 0.2 0.2 0.2 0.2 0.2 0.2
r̂ 1.0086 1.0719 0.6350 1.0659 1.4092 4.7878

Table 4. Implied reporting rates r for differential underreporting with p = 0.2 and Zipf’s law.

As can be seen, apart from the 2016 case, the reporting rates seem quite plausible given the
intuitive explanation above. Furthermore, the 2016 estimate for the reporting rate seems to
truly reflect the fact that there was a qualitative change in the data collection procedure by
the manager magazin staff. Within this interpretational framework, we can thus speculate
that the main cause for the very low α estimate in 2016 is due to the fact that wealth held in
foundations is much more salient for the richest part of the population in contrast to other
types of wealth. Thus, within this interpretation and apart from the special 2016 case, the
assumption of Zipf’s and consequently Gibrat’s law with scale-independence seems entirely
plausible. This impression is of course strengthened by the fact that Zipf’s law cannot
be rejected in all cases from 2010 to 2015 for the original estimates in Table 2. This im-
plies that the 95 per-cent confidence interval for the reporting rates always spans r = 1 also.

The same holds for the SOEP sample. Again under the assumption of the true distribution
being well described by Zipf’s law, we estimate the implied p-quantiles of non-respondents
by the estimated tail exponent α as ppl. We then proceed to estimate the size of this quantile
of non-respondents relative to the whole sample size by ptot = ppl/(1 + ppl) · (npl/ntot),
where npl is the population within the power law tail and ntot the total sample size. The
results are summarized in Table 5.
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Implied Non-Response Rates p
SOEP 2002 2007 2012

α̂ 1.3144 1.0978 1.2982
npl 961 1,260 1,332
p̂pl 0.0906 0.02310 0.08538
p̂tot 0.0033 0.0010 0.0043

Table 5. Implied non-response rates p̂pl and p̂tot for undersampling and Zipf’s law.

As the table shows, the implied non-response rates, especially as a ratio of the whole
sample, are very small. Arguably, it is very plausible that the effects of equiprobable
sampling combined with differential non-response can lead to non-reponse rates ptot of 0.1
to 0.4%. Thus, again, also the survey data seem to be consistent with the interpretation
of a scale-independent random growth process and thus, Zipf’s law in wealth levels. Since
the ensemble of Zipfian samples is also Zipfian, the “Theory First” interpretation thus
suggests that the whole multiplicative growth regime in Germany is characterized by
scale-independence. The findings of scale-dependence in the “Data First” framework
thus are here understood as mere artefacts of differential biases within the differing data
collection procedures, such as equiprobable sampling and differential non-response for the
survey study and the possible counteracting effects of salience biases, limited information
availability and tax avoidance.

While it is, given this interpretation, tiny rates of differential non-response causing the
deviation between the estimated tail exponents in the SOEP, α̂SOEP , and the manager
magazin, α̂mm, the consequences for the estimated total wealth within the power law
regime are enormous. We work with the continuous analogue of the power law distribution
and simply integrate to derive a measure for the total power law wealth W with

Ŵi = N̂ ·
∫ wmmmax

ŵSOEPmin

f̂i(w) · w dw, (5)

where f̂i(w) denotes the estimated PDF of the power law given by

f̂i(w) = α̂i · ŵSOEPmin · w(−α̂i+1), (6)

with ŵSOEPmin as its respective parameters α̂i ∈ {α̂mm; α̂SOEP}. Notice that the only source
of difference here is αi which can be either the estimate for the survey study or the rich
list. N̂ is determined according to the procedure in Appendix I and also common between
both types of samples. Since the respective periods for which the studies were conducted
do never coincide, we consider all possible combinations of parameters for the estimation
of the total power law wealth W . The results are given in Table 6.
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SOEP Ŵ

SOEP years
mm years 2010 2011 2013 2014 2015 2016

2002 340 314 839 393 279 85
2007 430 395 1,098 495 345 99
2012 303 278 783 349 242 68

mm Ŵ

SOEP years
mm years 2010 2011 2013 2014 2015 2016

2002 1,096 1,079 1,819 1,409 1,280 1,171
2007 1,129 1,109 1,910 1,447 1,305 1,177
2012 1,140 1,118 1,939 1,458 1,313 1,179

Table 6. Estimated total wealth in the power law tail for the SOEP and manager magazin samples
(in billion e, inflation-adjusted with base year 2010 and rounded off to the integer level). The SOEP
estimates are calculated from the parameter combinations with the ŵSOEPmin , α̂SOEP and wSOEPmax from the
SOEP sample and the N̂ from manager magazin sample for the respective years given in the table. The
manager magazin estimates are calculated from the parameter combinations with the ŵSOEPmin from the
SOEP samples and the α̂mm, the in-sample power law population Nmm and ŵmmmin from the manager
magazin sample for the respective years given in the table.

As can be easily seen, the difference between the SOEP and manager magazin estimates
is enormous. The total wealth is higher by at least double for the manager magazin,
with some estimates being more than one order of magnitude larger. While this last
finding is restricted to the problematic case of 2016 and might thus be spurious, the ratio
for the other years is also huge. For 2015, for example, the manager magazin estimates
are between 3 to 5.5 times larger than their SOEP analogue. Given the fact that these
estimates only differ by their respective estimated tail exponents, this highlights the highly
non-linear effects of biases in the estimation of this tail exponent on estimated total wealth.
We note further that these estimates taken on their own are likely downwards biased
even for the manager magazin case. This is due to the fact that we take the empirical
maximum wealth levels (from the rich list) that might be subject to underreporting and
tax avoidance. While the total wealth estimates on their own should thus be taken with a
grain of salt, the methodological point on their relative size estimated from different sample
types is arguably more relevant. If the “Theory First” interpretation is even partially
correct, this implies that wealth estimates from survey studies might be severely distorted
and downwards biased both with respect to the within-sample inequality as well as the
estimates for total wealth.

5 Discussion
Are returns to net wealth scale-dependent for the richest Germans? While the “Data
First” interpretation suggests that the observed consistent deviations from Gibrat’s law in
the growth process and consequently Zipf’s law in wealth levels are reflective of the true
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data-generating process, the “Theory First” interpretation is able to plausibly explain these
deviations by differential biases between sample types. The deliberately unsatisfactory
answer we aim to give is that we do not know and cannot decide with the given evidence.
Indeed, we consider it to be the main contribution of this paper to point this out.

Three implications follow from the apparent lack of decisive evidence in favour or against
scale-dependence. First,starting from the most general one, our result seems to be an
instance of the underdetermination of scientific theory by evidence featuring prominently
in the philosophy of science at least since the turn of the 20th century (Quine, 1975). As we
argue, the proposed mutually contradicting interpretations are observationally equivalent
with each other. Appealing to plausibility as a criterion also seems to be no solution, as
both the implied parameter values within the “Theory First” framework as well as the
narrative underlying the “Data First” interpretation both appear to be perfectly plausible.
The pre-analytic vision thus not only informs the research agenda but also the conclusions
drawn from the results.

Second, in a more narrow sense, our results can also be interpreted as a cautionary tale
against the pitfalls of comparing trends between and pooling data from different sample
types potentially affected by differential biases. This is at least what “Theory First”
suggests. Given the huge difference in implied total wealth from potentially a tiny degree
of undersampling – an estimated 0.1% to 0.4% non-response rate leading up to one order
of magnitude difference in estimated total wealth – the choice of sampling might heavily
influence the inferences one can draw from it. This small degree of necessary bias seems
to be easily explainable by the impact of equiprobable sampling alone within a power law
regime of the population. As we have shown analytically, this leads to a inclusion proba-
bility of the maximum potentially heavily affecting the estimation of the tail exponent by
only about 0.035%. Apart from such issues pertaining the cross-sectional distributions, the
proposed differential biases also cast doubt on the validity of conclusions in the time-series
dimension within sample-types. This is due to the fact that valid inferences in the presence
of such biases require stability of parameters over time. If parameters are allowed to
change over time, identified trends might become spurious and rather reflect changes in
bias. Since the proposed explanation of biases is partially behavioural, such as building on
empirically well established phenomena such as salience, differential tax avoidance and
social desirability rather than institutional, there is no reason to expect stability. The
estimated parameters within the “Theory First” framework indeed suggest such variable
behavioural responses over time.

Finally and maybe most controversially, the findings within both respective interpretational
frameworks challenge a particular piece of established wisdom within the economics
profession. Within the “Data First” interpretation, the estimations seem to suggest that
the richest individuals are able to circumvent the risk-return trade-off by a huge margin
and increase their expected returns while simultaneously decrease their risk-exposure
as measured by the variance of returns. This is in partial agreement with Fagereng
et al. (2018) and Bach et al. (2017) who also find excess risk-adjusted returns for the
wealthiest but find margins that are much more narrow and an increase in risk-exposure
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of the wealthiest in contrast to our measured decrease. Given this pronounced deviation
between the richest sub-groups, this finding also calls the efficiency of capital markets into
question that primarily govern the growth process there. With respect to the “Theory
First” interpretation, the enormous differences between total wealth estimates suggest
that inferences from survey studies regarding the cross-sectional distribution of wealth and
its time-variation might be heavily distorted. This also suggests that discussions about
the notion of “representativeness” in scale-free systems are not discussions about technical
subtleties but disagreements in substance. In Appendix G, we conduct a simple analytical
thought experiment for an extreme case of unrepresentative oversampling of the richest,
that is, “logarithmic sampling” according to orders of magnitude in wealth levels. We
show that for Zipf’s law, the necessary sampling ratio to surely include a unique maximum
observation decays extremely fast by a power function. If the maximum is indeed as
important as our analytical results on the distortion of estimators by undersampling
indicate, even conventional oversampling techniques are arguably insufficient and should
mimic our stylized scenario of logarithmic sampling more to achieve unbiased estimations.
Thus, we would suggest that being representative about wealth requires being strongly
unrepresentative about individuals.
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Appendix

A Model
Consider the Markov diffusion with support over the real half-line (0,∞) for the normalized
wealth w of a typical household or individual given by

dwt/wt = µ(w)dt+ σ(W )dBt, (7)

where µ is the mean growth rate of normalized wealth, σ its standard deviation and dBt

are Wiener increments. Denote by f(w, t) the distribution of normalized wealth levels at t
and f(w) the stationary density for t→∞. The Fokker-Planck equation is then given by

∂

∂t
f(w, t) = −∂[µ(w)wf(w, t)]

∂w
+ 1

2
∂2[σ(w)w2f(w, t)]

∂w2 . (8)

For the stationary state, it has to hold that

0 = −∂[µ(w)wf(w)]
∂w

+ 1
2
∂2[σ(w)w2f(w)]

∂w2 . (9)

Integrating yields

0 = −[µ(w)wf(w, t)] + 1
2
∂[σ(w)w2f(w, t)]

∂w
. (10)

This allows to solve for f(w) by differentiating the right term by

0 = −µ(w) · w · f(w)

+ 1
2

[
∂σ2(w)
∂w

· w2 · f(w) + σ2(w) · 2w · f(w) + σ2 · w2 · f ′(w)
]

(11)

and therefore

f(w) = σ2(w) · w2 · f ′(w)
2µ(w)w − (∂σ2(w)/∂w)w2 − σ2(w)w (12)

Assume that the stationary distribution is indeed a power law, that is, assume a reflecting
boundary wmin which is by Theorem 1 in Levy and Levy (2003) equivalent in this setting.
The tail exponent of the stationary density α is then given by

α(w, f) = −w · f
′(w)

f(w) . (13)

Plugging equation (12) in (13) gives the desired result with

α(µ, σ) = 1− 2 µ(w)
σ2(w) + w

σ2(w)
∂σ2(w)
∂w

. (14)
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Since we consider normalized wealth levels, µ(w) is given by the excess expected growth
rate relative to the average growth rate of all wealth levels γ̄ by γ(w)− γ̄ which implies
for the tail exponent

α(µ, σ) = 1− 2γ(w)− γ̄
σ2(w) + w

σ2(w)
∂σ2(w)
∂w

.† (15)

Zipf’s law emerges as a special case of growth rates characterized by Gibrat’s law. This
implies that the partial ∂σ2(w)/∂w is zero, as there is no scale-dependence in the variance.
Also, Gibrat’s law implies that the expected normalized growth rate, that is, the excess
growth rate of wealth levels w in relation to the average growth rate, is independent of w
for any w and thus, must be zero. This implies indeed the Zipf exponent of α(0, σ) = 1.
To confirm this, consider the general diffusion in equation (7), with µ(w) = µ = 0 and
σ(w) = σ. The general Fokker-Planck equation (8) is for these assumptions given by

0 = −∂[0 · w · f(w)]
∂w

+ 1
2
∂2[σw2f(w)]

∂w2

= 1
2
∂2[σw2f(w)]

∂w2 . (16)

It is easy to see that a density f(w) solves equation (16), whenever the differentiated term
in (16) is independent of w. This is exactly the case for f(w) = C/w2, that is, Zipf’s law
with a normalizing constant C independent of w, where equation (16) becomes

0 = 1
2
∂2[σw2Cw−2]

∂w2 (17)

= 1
2
∂2[σC]
∂w2 (18)

= 0. (19)

†In Gabaix (1999), there is a minor typographical error on page 757, where the correct expression
for the tail exponent in equation (13) should say γ(S), not ζ(S), like for our analogous expression in
equation (15).
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B Literature Review on Highest Wealth Regions

Author(s) Countries Data source α estimate
Abul-
Magd
(2002)

Egypt Data for Ancient
Egypt (14th century
BC) with the area of
houses as proxy for
wealth (distribution
from excavations)

3.76

Bach et al.
(2011)

Germany Rich list provided by
manager magazin (300

individuals, 2007)

1.34

Brzezinski
(2014)

World, US,
Russia, China

Rich lists provided by
Forbes (World

Billionaires for 1996 -
2012, Richest

American List for
1988 - 2012, Richest
Chinese list 2006 -

2012) and the Russian
magazine Finans
(2004 - 2011)

1.2 and 2
(World), 1.4
to 1.7 (US),
1.6 to 2

(China) and
0.7 to 0.8
(Russia)

Castaldi
and

Milaković
(2007)

US, UK Rich lists provided by
Forbes (400

individuals, 1996 -
2004) and Sunday

Times (1000
individuals, 2001 -

2004)

1.25 to 1.57
(Forbes) and
1.03 to 1.19
(Sunday
Times)

Coelho
et al.
(2005)

UK Data by the Internal
Revenue Service for

2001

1.78

Drăgulescu
and

Yakovenko
(2001)

UK Data by the Internal
Revenue Service for

1996

1.9

Eckerstorfer
et al.
(2016)

Austria Data from the
Household Finance
and Consumption

Survey of 2011 (2,380
observations)

1.14 to 1.36
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Hegyi et al.
(2007)

Hungary Data for the owned
land for aristocratic

families (1283
observations) in

Hungary in the year
1550 (proxy for wealth

is the number of
owned serf families)

0.92

Levy
(2003)

US Rich list provied by
Forbes (400

individuals, 1996)

1.35

Levy
(1998)

US, UK, France Forbes (400
individuals, 1997),

Sunday Times (1000
individuals, 1997),
Almanac Quid

(162,370 individuals in
the highest wealth
region for France)

1.35 (US),
1.06 (UK)
and 1.82
(France)

Levy and
Solomon
(1997)

UK Data by the Internal
Revenue Service for

1970

1.4

Milaković
(2003)

Sweden,
Belgium,
Canada,
Denmark,

Germany, US,
UK, France

Lorenz data, various
sources

1.07 to 1.68

Ning and
You-Gui
(2007)

China Rich list by the
Chinese magazine

New Fortune for the
years 2002 - 2004 (400

observations)

2.285 (2002),
2.043 (2003)
and 1.758
(2004)

Sinha
(2006)

India Rich list by the Indian
magazine Business

Standard for 2002 and
2003 (125

observations) and by
Forbes for 2004 (40

observations)

0.81 (2002),
0.82 (2003)
and 0.92
(2004)

Table 7. Literature review on the distributional regularities in the highest wealth regions.
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C CCDFs for the manager magazin samples
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Figure 6. CCDF 2016 (mm sample).
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Figure 7. CCDF 2015 (mm sample).
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Figure 8. CCDF 2014 (mm sample).
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Figure 9. CCDF 2013 (mm sample).
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Figure 10. CCDF 2011 (mm sample).
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Figure 11. CCDF 2010 (mm sample).

Note: CCDFs on a double-log scale, fits by MLE. Error bands correspond to a deviation of two standard
errors for the characteristic exponents. Estimation of the standard errors by approximation from the
Gaussianity of the Hill estimator (De Haan and Resnick, 1997).
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D CCDFs for the SOEP samples
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Figure 12. CCDF 2002 (SOEP)
for the lower tail of the distribution.
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Figure 13. CCDF 2007 (SOEP)
for the lower tail of the distribution.
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Figure 14. CCDF 2012 (SOEP)
for the lower tail of the distribution.
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Figure 15. CCDF 2002 (SOEP)
for the upper tail of the distribution.
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Figure 16. CCDF 2007 (SOEP)
for the upper tail of the distribution.
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Figure 17. CCDF 2012 (SOEP)
for the upper tail of the distribution.

Note: CCDFs on a double-logarithmic scale, fits by MLE for a Gamma distribution (lower tail) and a
power law (upper tail). Error bands correspond to a deviation of two standard errors for the characteristic
exponents (in the power law case) and for both parameters simultaneously (in the Gamma case). Estimation
of the standard errors in the former case by approximation from the Gaussianity of the Hill estimator
(De Haan and Resnick, 1997), in the latter case by utilizing the Fisher information (Fisher, 1922).
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E Equivalence Tests for Growth Rate Distributions
Distributional Equivalence Growth Rates (KW)

KW Test mm 2010/15 mm 2011/16 SOEP 2002/07 SOEP 2007/12
mm 2010/2015 - 0.37 45.8 *** 26.9 ***

- (0.543) (0) (0)
mm 2011/16 0.37 - 41.4 *** 22.7 ***

(0.543) - (0) (0)
SOEP 2002/07 45.8 *** 41.4 *** - 2.16

(0) (0) - (0.133)
SOEP 2007/12 26.9 *** 22.7 *** 2.16 -

(0) (0) (0.133) -

Table 8. Test statistics and p-values for the Kruskall-Wallis test of location equivalence. Null hypothesis
is location equivalence. * significance at the 10 per-cent, ** at the 5 per-cent and *** at the 1 per-cent
level. p-values in parentheses.

Distributional Equivalence Growth Rates (CvM)

CvM test mm 2010/15 mm 2011/16 SOEP 2002/07 SOEP 2007/12
mm 2010/2015 - 0.152 5.15*** 2.98***

- (0.385) (0) (0)
mm 2011/16 0.152 - 4.73*** 2.62***

(0.385) - (0) (0)
SOEP 2002/07 5.15*** 4.73*** - 0.363*

(0) (0) - (0.0908)
SOEP 2007/12 2.98*** 2.62*** 0.363* -

(0) (0) (0.0908) -

Table 9. Test statistics and p-values for the Cramér-von-Mises test of distributional equivalence. Null
hypothesis is distributional equivalence. * significance at the 10 per cent, ** at the 5 per cent and *** at
the 1 per cent level. p-values in parentheses.

Distributional Equivalence Growth Rates (KS)

KS test mm 2010/15 mm 2011/16 SOEP 2002/07 SOEP 2007/12
mm 2010/2015 - 0.0723 0.347*** 0.274***

- (0.376) (0) (0)
mm 2011/16 0.0723 - 0.352*** 0.28***

(0.376) - (0) (0)
SOEP 2002/07 0.347*** 0.352*** - 0.145*

(0) (0) - (0.0604)
SOEP 2007/12 0.274*** 0.28*** 0.145* -

(0) (0) (0.0604) -

Table 10. Test statistics and p-values for the Kolmogorov-Smirnov test of distributional equivalence.
Null hypothesis is distributional equivalence. * significance at the 10 per cent, ** at the 5 per cent and
*** at the 1 per cent level. p-values in parentheses.

A-7



F Subbotin Estimates for the Growth Rate Distribu-
tions

Estimated Parameter κ̂ SE
SOEP

2002/07 1.18 0.1766
2007/12 0.8463 0.1178
manager magazin

2010/15 0.8523 0.08587
2011/16 0.9509 0.09798

Table 11. Summary of estimates for the Subbotin shape parameter and all growth rate distributions.
Estimates by MLE, standard errors from the Fisher information (Fisher, 1922). The estimation was done
via Subbotools 1.3.0 that delivered the most accurate and efficient estimates in simulation runs (Bottazzi,
2004).

A-8



G Sampling From a Power Law
Simple Random Sampling without Replacement. Equiprobable Selection of Elements.

Let N ∈ N+ denote the total population and n ∈ N+, with N > n, the size of the sample. The sampling
procedure selects each element of the set M with equal probability and without replacement. If the
maximum value of N , denoted by wmax, is unique, the probability of wmax to be included in the sample,
that is, p(wmax ∈ m), is equivalent to the probability of any unique element to be chosen under these
conditions. The inclusion probability of wmax is therefore given by

p(wmax ∈ m) =
(
N−1
n−1

)(
N
n

) (20)

=

(N − 1)!
(n− 1)! · (N − n)!

N !
n! · (N − n)!

= n! · (N − 1)!
N ! · (n− 1)!

= n! · (N − 1)!
N ! · (n− 1)!

= n · (n− 1)! · (N − 1)!
N · (n− 1)! · (N − 1)!

= n

N
. (21)

The inclusion probability under simple random sampling without replacement for wmax therefore corre-
sponds to the sampling ratio n

N and is equal to unity only if n = N .
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Logarithmic Random Sampling without Replacement. Assumption of Zipf’s Law.

Let again N ∈ N+ denote the total population and n ∈ N+, with N > n, the size of the sample. Fur-
thermore, assume that the total population is now divided into s different “slices”, where the length
of each slice corresponds to one order of magnitude of the relevant quantity w (that is, the slices are
scaled logarithmically). Now the same procedure as above is applied to each logarithmic slice - every
element in each slice is selected with equal probability and without replacement. It has to hold that s ∈ N+.

For every slice, ns elements are included in the sample of size n, where n obviously needs to be an integer
multiple of s, since n

s ∈ N+. The slice covering the highest order of magnitude for w also has to include
wmax as the maximum value. If one assumes Zipf’s law to hold, this range of w includes a proportion
10−s+1 of the total population N . Therefore, with this procedure and under the assumption of Zipf’s law
to hold, ns elements out of a set of size N

10s−1 are chosen. The probability of a unique wmax to be included
in the chosen m is therefore given by

p(wmax ∈ m) =

((N/10s−1)−1
(n/s)−1

)(
N/10s−1

n/s

) (22)

=

((N/10s−1)− 1)!
((n/s)− 1)! · ((N/10s−1)− (n/s))!

N/10s−1!
(n/s)! · ((N/10s−1)− (n/s))!

= (n/s)! · ((N/10s−1)− 1)!
(N/10s−1)! · ((n/s)− 1)!

= (n/s) · ((n/s)− 1)! · ((N/10s−1)− 1)!
(N/10s−1) · ((N/10s−1)− 1)! · ((n/s)− 1)!

= 10s−1

s
· n
N
, with n

N > 10s

s .

Therefore, the inclusion probability p(wmax ∈ n) under logarithmic sampling compared to simple random
sampling converges much faster to unity with the sampling ratio, that is, by a factor of 10s−1

s . The
sampling ratio n

N has to equal merely s
10s−1 for p(wmax ∈ n) = 1. For s = 2, it has to equal 1

5 , for s = 3, it
has to equal 3

100 , and so on. Of course, this is the case, because for this condition to hold, every element in
the “slice” covering the highest order of magnitude for w has to be included in the sample. For s = 1, this
procedure obviously corresponds to the case for equiprobable sampling, where the inclusion probability
equals the sampling ratio n

N (as 10s−1

s = 1 for s = 1).
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H Analytical Results for the Estimation of α under
p-Truncation

Zipf’s Law and Hill Estimator. Preliminaries.

Suppose, a certain discrete quantity w is perfectly distributed according to Zipf’s Law. This implies that
the α of the underlying power law distribution has to equal unity. According to the Rank-Size formulation,
its values are therefore given by

w(s) = wmax
s

, (23)

with k = 1, 2, ..., N as the respective ranks of a given w in a descending order, N as the number of values
with N ∈ N+ and wmax as the maximum value in the distribution. Equivalently, rewriting equation 23 in
terms of the minimum value wmin yields

w(s) = wmin ·N
s

, (24)

since it has to hold that wmax = N · wmin.

A Maximum Likelihood Estimation (MLE) for any given (continuous) power law yields the Hill estimator
(Clauset et al., 2009), that is,

α̂(wmin;N) = N ·
( N∑
s=1

ln

(
w(s)
wmin

))−1
(25)

which is by equation (24) given by

= N ·
N∑
s=1

ln

(
N

s

))−1
, (26)

which is now independent of wmin and converges asymptotically for N →∞ to α = 1 as the tail exponent
for Zipf’s law.

A-11



Unanimous Proportional Underreporting. Unbiasedness Result.
Suppose that a discrete quantity is perfectly distributed according to Zipf’s law. All individuals report only
a fraction r of this quantity (the response-rate) which implies unanimous (proportional) underreporting.
The rank-size rule for unanimous underreporting thus reads

wuu(s) = r · wmin ·N
s

, (27)

with s = 1, 2, ..., N as the ranks.
Notice that we also require wuumin = r · wmin by w(N) = wmin and wuu(N) = wuumin.
The Hill-estimator for αuu under unanimous underreporting by equation (27) thus reads

α̂uu(wuumin;N) = N ·
( N∑
s=1

ln

(
wuu(s)
wuumin

))−1
(28)

= N ·
( N∑
s=1

ln

(
r · wmin ·N
r · wmin · s

))−1
(29)

= N ·
N∑
s=1

ln

(
N

s

))−1
(30)

which is the unbiased estimator of equation (25).

Differential Non-Response of the Upper p Quantile. Asymptotic Properties.
Suppose that a discrete quantity w is perfectly distributed according to Zipf’s Law and is p-truncated.
The p-truncated rank-size rule therefore reads

w(s) = wmin ·N
s

, (31)

now with s = bp ·Ne+ 1, bp ·Ne+ 2, ...., N as the ranks.

For the p-truncated distribution, the MLE for α̂nr as the estimated value resulting from differential
non-response would therefore read

α̂nr(p;N) = (N − bp ·Ne+ 1) ·
( N∑
s=bp·Ne+1

ln

(
N

s

))−1
. (32)

Further simplifying equation 32 yields

α̂nr(p;N) = 1 +N −N · p
ln NN−N·p·(Np)!

N !

. (33)

Utilizing Stirling’s approximation, in particular Ramanujan’s formula which states that ln n! ≈ n · ln n−
n+ 1

6 ln(n(1 + 4n(1 + 2n))) + 1
2π (Ramanujan, 1988), equation 33 now becomes

α̂nr(p;N) ≈ 1 +N −N · p
r

. (34)

with r = (N −N · p) · ln (N)−
[
N · ln N −N + 1

6 ln(N(1 + 4N(1 + 2N)))
]

+
[
N · p · ln (N · p)−N · p+

1
6 ln(N · p(1 + 4(N · p)1 + 2 · (N · p))))

]
.¶¶

¶¶In particular, Ramanujan shows that the asymptotic error for the above approximation is 1
1440 N3

which should be sufficient for the purposes of this formula.
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Finally, taking the limit from the expression in equation 34 yields

lim
N→∞

1 +N −N · p
s

= 1− p
1− p+ p · ln (p) . (35)

In the limit, the impact of N has completely vanished and the distortion of α is now only dependent on p.
As one can easily see, even for large values of N , the estimator is (upwards) biased for any positive p,
since for any p > 0, the numerator is larger than the denominator which implies an α > 1. The result
in equation H shows that the upwards bias is not a mere artefact of sample size, but hold true for any
sufficiently large N .

Differential Underreporting of the Upper p Quantile. Asymptotic Properties.
Suppose that a quantity w is distributed according to Zipf’s law. Consider the case, where only the upper
p-quantile is proportionally underreporting by a reporting rate r ∈ (0, 1). The rank-size rule is now a
piecewise function for the upper p-quantile and the rest and given by

w(s)du = r · wmin ·N
s

, (36)

with s = 1, 2, ..., bp ·Ne as the ranks and

w(s)du = wmin ·N
s

(37)

with s = bp ·Ne+ 1, bp ·Ne+ 2, ...., N as the remaining ranks.

We require that wmin, the minimum of the unchanged initial distribution stays the minimum for the
distribution with differential underreporting to avoid issues with the ML estimator which is based on this
minimum. For this, the smallest reported value in the underreporting region has to be greater than wmin,
that is,

w(pN)du = r · wmin ·N
pN

> wmin

and therefore
r

p
>1. (*)

Thus, for the minimum not to be affected, it has to hold by (*) that the reporting rate exceeds the
affected population share of the highest wealth levels. By the linearity of the sum function and assuming
condition (*) to hold, we can write the Hill estimator for the tail exponent α̂du by differential (proportional)
underreporting now as

α̂du(p; r;N) = N

( N∑
s=bp·Ne+1

ln

(
N

s

)−1
+
bp·Ne∑
s=1

ln

(
r ·N
s

)−1)
. (38)

Further simplifying yields

α̂du(p; r;N) = N

ln
(
NN−Nq(Nq)!

N !

)
+ ln

(
(Nr)Nq

(Nq)!

) . (39)

Utilizing again Stirling’s approximation, we get

α̂du(p; r;N) ≈ N

v
, (40)
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with v = − 1
6 ln

(
8N3 + 4N2 +N + 1

30
)

+N p ln(Nr) + (N −Np) ln(N) +N +N(−ln(N))− ln(π)
2 .

Taking the limit for N →∞ gives

lim
N→∞

N

v
= 1

1 + p ln(r) . (41)

Notice that for p ∈ (0, 1) and r ∈ (0, 1), the estimator is therefore always upwards biased compared to the
benchmark of α = 1. Condition (*) precludes the possibility of a negative induced bias which would result
from p ln(r) > −1 and would be uninterpretable. For this, note that condition (*) implies ln(r) > ln(p),
since ln(·) is monotonically increasing in its argument. It is thus sufficient to show that p ln(p) > −1.
Rearranging yields

ln(p) + 1
p
> 0. (42)

Define f(p) = ln(p) + 1
p . By

f(1) = 1 (43)

and df

dp
= 1
p
− 1
p2 < 0 ,∀p ∈ (0, 1), (44)

we know that the function is monotonically decreasing for the whole considered interval and positive at
the upper interval boundary. From (43) and (44), we can therefore conclude that f(p) > 0 for all p ∈ (0, 1).
This is exactly the non-negativity constraint in (42) and thus the desired result that condition (*) implies
strictly non-negative induced biases in approximation (41).
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I Population Estimates
We estimate the different population levels by taking the CDF P (w;wmin, α) of a continuous power law
with parameters wSOEPmin from the SOEP samples and the αmm, the in-sample power law population Nmm

and wmmmin from the manager magazin sample. N̂ for a specific parameter combination is then calculated
as N̂ = 1/(1− P (wmmmin;wSOEPmin , αmm) ·Nmm. To give some intuition for this, N̂ would thus correspond
to the power law population, when the power law in the manager magazin sample would be extended to
the minimum determined in the SOEP. The results are given in the table below.

Population N̂
2010 2011 2013 2014 2015 2016

N̂ (wmin = 280,000) 352,534 324,983 869,368 407,397 288,683 88,307
N̂ (wmin = 200,000) 493,270 452,876 1,258,710 567,946 395,524 114,097
N̂ (wmin = 180,000) 547,981 502,467 1,413,360 630,216 436,510 123,628

Table 12. The estimates are calculated from the parameter combinations with the wSOEPmin from the
SOEP samples and the αmm, the in-sample power law population Nmm and wmmmin from the manager
magazin sample for the respective years given in the table.
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