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Abstract

The topic of this paper is the estimation uncertainty of the Stock-Watson

and Gonzalo-Granger permanent-transitory decompositions in the framework

of the cointegrated vector-autoregression. Specifically, we suggest an ap-

proach to construct the confidence interval of the transitory component in a

given period (e.g. the latest observation) by conditioning on the observed data

in that period. To calculate asymptotically valid confidence intervals we use

the delta method and two bootstrap variants. As an illustration we analyze the

uncertainty of (US) output gap estimates in a system of output, consumption,

and investment.
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1 Introduction

In this paper we suggest an approach to assess the estimation uncertainty of two

permanent-transitory (PT) decompositions estimated in a cointegrated VAR frame-

work, namely of the Stock and Watson (1988, SW) and Gonzalo and Granger (1995,

GG) methods.

There are many ways to decompose integrated multivariate time series into their

unobserved permanent and transitory components, even if we restrict our atten-

tion to additive decompositions yt = yperma
t + ytrans

t (where yt is an n-dimensional

time series). The most widespread methods are state-space models estimated with

the Kalman filter algorithm on the one hand,1 and decompositions based on coin-

tegrated VARs on the other hand (vector error-correction models, VECM).2 The

leading examples of the VECM-based decompositions are the extraction of SW

common trends and GG common factors with their corresponding transitory com-

ponents. The state-space approach is a powerful and flexible tool which also has the

advantage that the Kalman filter provides a way to assess the uncertainty surround-

ing the estimates of the (smoothed) states and therefore of the permanent compo-

nent. However, the estimation of state-space models poses the typical problems of

iterative numerical methods, namely that they may fail to converge, and that dif-

ferent arbitrary choices of initial values (for the unobserved states) sometimes also

have a considerable impact on the results. In contrast, the SW and GG measures

only rely on the available estimated quantities from the VECM via closed-form al-

gebraic expressions, and therefore these measures may be more desirable in certain

applications.3 However, for VECM-based measures there has not existed a way to

1These are also known by the generic name of unobserved-components models (Harvey and
Proietti, 2005) or sometimes “structural” time series models, see for example Harvey and Shephard
(1993).

2Here we do not consider univariate filters or smoothers like the Hodrick-Prescott or Baxter-
King filter. Of course they could also be trivially applied to multivariate time series on an element-
by-element basis, but we restrict our attention to those methods that take the multivariate system
linkages explicitly into account.

3See below for the detailed formulas. We acknowledge the fact that if over-identifying restric-
tions are placed on the cointegration and/or the adjustment coefficients, the estimation of the coin-
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quantify the estimation uncertainty for a given period of interest (i.e., for a given

data constellation). It has only been possible so far to assess the significance of

the coefficients of the transitory decomposition in general for the whole sample (on

average), by standard test procedures. Therefore the goal of this paper is to provide

additional tools to quantify the uncertainty around the SW and GG decompositions.

The entire analysis will be conducted conditional on a fixed cointegration rank.

This means that a certain degree of model uncertainty will not be captured by our

confidence bands, if the true cointegration rank is not treated as known a priori. But

such a conditional analysis is a standard approach to construct standard errors for

VECM coefficients (including the implied impulse-response coefficients). Typical

state-space models also share the characteristic that the dimension of the permanent

component needs to be fixed before estimation.

After introducing the model framework and fixing some notation in the follow-

ing section, we first analyze the uncertainty of the GG transitory component (section

3), and then present the analogous approach with respect to the SW component (sec-

tion 4). In section 5 both approaches are applied to a three-variable dataset inspired

by the influential work of King, Plosser, Stock, and Watson (1991), but updated to

include current data. Section 6 summarizes.

2 Framework and assumptions

Consider a standard n-dimensional VAR with p lags:

yt = A1yt−1 + ...+Apyt−p +µ + εt , t = p, ...,T (1)

where the innovations are white noise with covariance matrix Θ. We can reparam-

eterize this system as a VECM:

tegrating relations itself becomes a difficult numerical maximization problem, too (see for example
Boswijk and Doornik, 2004). However, once the VECM is estimated, applying the mentioned PT
decompositions is possible with closed-form algebraic expressions.
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∆yt = αβ
′
yt−1 +

p−1

∑
i=1

Bi∆yt−i +µ + εt (2)

When cointegration is present, the long-run matrix αβ
′
= −I +∑

p
i=1 Ai has re-

duced rank r which is the number of linearly independent cointegration relation-

ships (and is also the column rank of the n×r matrices α and β ). The coefficients of

the lagged differences are given by B j =−∑
p
i= j+1 Ai. We define the lag polynomial

B(L) = I−∑
p−1
i=1 BiLi. Because it will be repeatedly needed below, we introduce an

abbreviation for the following term: B−1
1αβ
≡ [B(1)−αβ ′]−1.

It is well known that the constant term µ can serve two purposes: if unrestricted,

it may represent a linear drift term in the levels of the variables, as well as balancing

the mean of the cointegrating relations. But if it is restricted as µ = αµ0, the levels

of the data are assumed to be free of linear trend components.4

Apart from standard regularity conditions like a well-behaved distribution of

the residuals εt (such that the standard asymptotic results for the VECM apply), we

make the following assumptions:

Assumption 1. All variables are individually I(0) or I(1).

This assumption rules out higher integration orders.

Assumption 2. Fixed cointegration rank r, n > r > 0.

The cointegration rank may either be known, or its determination is treated

as a pre-test outside of the estimation problem of the VECM and the transitory

components of the data.

Assumption 3. The cointegration coefficients β are estimated by maximum likeli-

hood (“Johansen procedure”) and are properly normalized and identified.

4In the following, we will deal with the more general case of an unrestricted constant, which
is much more popular in economics given the trending behavior of many variables in growing
economies. As a further deterministic component it would also be possible for our analysis to allow
a linear trend term in the cointegrating relations, because the convergence rate of its estimator is also
greater than

√
T . (It may be advisable in practical work to normalize the trend term to have mean

zero.) Our explicit formulation in this paper focuses on the presented case, however.
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This assumption serves to achieve super-consistency of the estimates of the coin-

tegration coefficients, see Paruolo (1997). Inter alia it means that identification is

achieved by imposing restrictions on β , not on α , and that no coefficients with a

true value of zero are “normalized” to a non-zero value. Other super-consistent

estimation methods may be used as well.

For the application of the delta method as well as the bootstrap it is important

to ascertain the asymptotic properties of the estimators. Formally, we collect the

underlying coefficients of the model in one matrix K =(α,B1, ...,Bp−1,µ) and stack

the coefficients in the vector k = vec(K); this vector has nr+n2(p−1)+n elements

that are freely varying.5 Note that β is not included here because its estimate has

to be treated as asymptotically fixed given its higher convergence rate (T instead of
√

T ), i.e. its variation is asymptotically dominated by the variation of the estimators

of the K elements. The OLS estimate of this vector k is asymptotically normally

distributed and has
√

T -convergence.6

Lemma 1. Standard asymptotics of the underlying coefficients:

√
T (k̂− k)→ N(0,Ω)

The covariance matrix Ω can be easily estimated within the standard system OLS

estimation once the super-consistent estimate β̂ has been determined.

Conditioning: The idea in this paper is to condition on the observed data at (or

for the SW decomposition: around) an observation period τ . In order to determine

the resulting conditional estimation uncertainty of the transitory components, we

therefore must only consider the randomness stemming from the remaining obser-

vations. A simple way of doing this is to actually remove the conditioning data

5The only qualification here is given by the standard assumptions that were made about the model
class, i.e. the cointegration rank must be preserved and the system must not become integrated of
higher order. These requirements are fulfilled in the neighborhood of the true parameters.

6This also applies to the α⊥-directions of the constant term, see Paruolo (1997).
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from the likelihood function; this could be achieved either by using impulse dum-

mies for the corresponding observations, or in the often interesting case of the end

of the sample, by simply shortening the sample. Alternatively (“lazily”) we may

adopt a weaker position, still use all data in the sample, and make only sure that

the conditioning data do not affect the estimation asymptotically. For the Gonzalo-

Granger decomposition this requirement is automatically fulfilled, since there the

transitory component for a period τ only depends on the single contemporaneous

observation (see below) which of course is asymptotically negligible. But for this

“lazy” approach to work in the case of the SW decomposition –where lagged values

are involved (see below)– we need to limit the extent of the conditioning data, for

which we may use the following assumption.

Assumption 4. The lag length is at most growing slowly.

We must make sure that the conditioning data does not affect the estimates

asymptotically, if we use all data in the sample for convenience. For the extraction

of the Stock-Watson transitory components we need to assume e.g. limT→∞
p√
T
= 0.

This is a sufficient condition, and it is obviously fulfilled for a fixed lag length p.

3 The uncertainty of the Gonzalo-Granger decompo-

sition

3.1 Definition and representation of the GG decomposition

As shown by Gonzalo and Granger (1995), when the permanent and transitory com-

ponents are assumed to be linear combinations of the contemporaneous values yt

only, the PT decomposition is uniquely given as follows:

yt = β⊥(α
′
⊥β⊥)

−1
α
′
⊥yt +α(β ′α)−1

β
′yt , (3)
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where the first part is the non-stationary permanent component, and the second

part is the transitory component given by a linear combination of the cointegrating

relationships.

We will use the alternative formulation by Hecq, Palm, and Urbain (2000)

(based in turn on Proietti, 1997) which proves especially useful with the Stock-

Watson decomposition below.7 For that representation we need to define the fol-

lowing terms: First another lag polynomial is defined if p > 1: B∗(L) = B∗0+B∗1L+

...+B∗p−2Lp−2, where B∗j = ∑
p−1
i= j+1 Bi. With this setup an important projection ma-

trix is given by

P = B−1
1αβ

α

[
β
′B−1

1αβ
α

]−1
β
′ (4)

Since ψ1t = Pyt is a linear combination of the cointegrating relations β ′yt it is

obviously stationary, and it is actually shown by Proietti (1997) that this is just the

GG transitory component:

ytransGG
t = ψ1t = Pyt (5)

This transitory component will in general have a non-zero mean, however. For

an economic interpretation it is especially useful to consider a transformation of the

transitory component which will have an unconditional expectation of zero, because

the sign of that transformed component automatically tells us whether the observed

level of a variable is below or above its permanent component. For example the sign

of an output gap estimate is important for identifying a recessionary or overheating

economy.

To this end we use the expression (again adapted from Proietti, 1997) for the

mean of the cointegrating relationships:

7The notation is not completely identical, however.
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E(β ′yt) =−
(

β
′B−1

1αβ
α

)−1
β
′B−1

1αβ
µ, (6)

which enables us to calculate the de-meaned transitory component:

ψ̃1t = ψ1t−E(ψ1t)

= B−1
1αβ

α[β ′B−1
1αβ

α]−1
(

β
′yt +[β ′B−1

1αβ
α]−1

β
′B−1

1αβ
µ

)
= B−1

1αβ
α[β ′B−1

1αβ
α]−1

(
β
′; [β ′B−1

1αβ
α]−1

β
′B−1

1αβ
µ

)
(y′t ;1)′ (7)

≡ G(y′t ;1)′

Of course it is well known how to test the hypothesis that the GG transitory

component of a certain variable vanishes completely. From the definitions of the

GG decomposition it is clear that this involves a test that the i-th row of α is zero,

which is a standard test problem given the cointegration rank and the estimated

cointegration coefficients. This paper is instead concerned with the uncertainty of

the transitory component at a certain period, assuming that it exists at all.

3.2 The Delta method for the GG decomposition

We can express the de-meaned transitory GG component ψ̃1τ in period τ ∈{p, ...,T}

as a function of the underlying short-run
√

T -consistent coefficient vector k, of the

super-consistent cointegration coefficients β , and of the data; since the Gonzalo-

Granger transitory component ψ̃1τ only depends on the contemporaneous observa-

tions, we only need to condition on yτ :

ψ̃1τ = fGG(k;β ,yτ) (8)

The function fGG is of course given by the derivations of the transitory com-

ponents above. Let JGG be the Jacobian matrix of that function with respect to k,
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treating the cointegration coefficients β as (asymptotically) fixed and conditioning

on the data in period τ . In our illustration below, we use a numerical approximation

to the Jacobian as implemented by the fdjac() function in gretl. With this definition

we can state the first result with respect to the estimation uncertainty of the GG

transitory component.

Proposition 1. The conditional asymptotic distribution of the GG transitory com-

ponent estimator for a fixed yτ is given by:

√
T ( ˆ̃ψ1τ − ψ̃1τ) → N(0,JGGΩJ

′
GG), (9)

Proof. The proposition follows directly as an application of the standard delta method,

where Ω is the covariance matrix of the underlying coefficients in k, defined as be-

fore. Given the T -convergence of the cointegration coefficient estimates β̂ , their

variation is asymptotically dominated by that of the other coefficients and thus for-

mally negligible. The influence of yτ on the estimates is either non-existent (if a

dummy variable for period τ was used) or asymptotically negligible. A standard

system OLS estimate Ω̂ (for a given β̂ ) can be used for a feasible version of this

proposition.

The practical drawback of this formulation is that it would have to be re-calculated

for every τ . However, we can use the fact that the conditioning data are just a post-

multiplied factor. So if we are interested in the i-th element of the transitory com-

ponent we can use the i-th row of G: ψ̃1τ,i = g
′
i(y
′
τ ;1)′. This row is obviously also a

function of the underlying coefficients, but not of the data: gi = fg,i(k;β ). We can

denote the Jacobian of the function fg,i by Jg,i, and then express the variance of the

estimated i-th transitory component directly as in the following corollary.

Corollary 1. The variance of the GG transitory component estimator for a certain
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variable in a certain period is given by:

Var( ˆ̃ψ1τ,i) = (y′τ ;1)Jg,iΩJ
′
g,i(y

′
τ ;1)′ (10)

Since Jg,i is not a function of the data we only have to perform between 1 and

n Jacobian computations (depending on how many variables we are interested in)

instead of T − p. Nevertheless, it is important to keep in mind that the derived

confidence intervals are only valid for the chosen period τ and not as confidence

bands for the entire sample, since we cannot condition on the entire sample and still

have random estimates. When we display our calculations in a form that resembles

confidence bands for the time series, it is just done for convenience, since different

readers may be interested in different periods.

3.3 The bootstrap method

The justification of the bootstrap in this case rests essentially on the same foun-

dations as the delta method before. The underlying coefficients are freely vary-

ing (for a maintained cointegration rank r), and the asymptotic distribution of the

transitory components conditional on the data at a certain observation period τ is

well-behaved. Of course we hope that the bootstrap may yield some small-sample

refinements over the asymptotic approximation by the delta method, for example

by taking into account explicitly the variation of the cointegration coefficients esti-

mates.

To be concrete, the distribution for the period of interest τ can be simulated with

the following algorithm. As a starting point we can use the standard estimates of

(2) that we already used for the delta method.

1. Using the point estimates as the auxiliary data-generating process, simulate

artificial data for the periods t = p...T by drawing from a suitable distribution

describing the innovation process εt . This could either be a random draw
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from a fitted parametric distribution like a multivariate normal distribution

with covariance matrix Θ̂ (and mean zero, of course), or resampling from the

estimated residuals. We will use the observed values of yt as the initial values

of the artificial data in periods t = 0..p−1. The resulting artificial data may be

very different from the original data because it will have different underlying

realizations of the stochastic trends, but the coefficients of the model will be

comparable.

2. Re-estimate the VECM using the same specification that was applied to the

original data, but with the artificial data created in the previous step. Then

record the estimates of ψ̃1τ as defined in equation (7), which means using the

new estimated G coefficients of the current simulation run, but always em-

ploying the originally observed data (y′τ ;1). Denote that estimate by ψ̃1τ,w,

where w is a simulation index running from 1 to some sufficiently large inte-

ger W .

3. Repeat the previous two steps W times to get simulated distributions of (the

estimate of) ψ̃1τ .

4. For the i-th variable calculate variants of the confidence intervals for the esti-

mate of ψ̃1τ in the following two ways:

(a) First we base the intervals directly on the distributions of ψ̃1τ,w over

all w and construct a confidence interval using the empirical quantiles

of the simulated distributions: with γ as the nominal coverage of the

error band (1 minus the type-1 error) and the quantiles of ψ̃1τ,w given by

ψ̃1τ,(1−γ)/2 and ψ̃1τ,(1+γ)/2, the intervals are constructed as

[ψ̃1τ,(1−γ)/2; ψ̃1τ,(1+γ)/2]. (11)

This construction is analogous to what Sims and Zha (1999) have called
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“other-percentile” bands in the slightly different context of impulse-

response analysis, and they criticized their use as “clearly [amplifying]

any bias present in the estimation procedure” (p. 1125).

(b) Because of this criticism we also consider a Hall-type bootstrap, where

the relevant distributions are given by ψ̃1τ,w− ψ̃1τ , i.e., for each variable

and period the bootstrap realizations are corrected by the original point

estimate.8 Denoting the quantiles of these corrected distributions by

(ψ̃1τ,w− ψ̃1τ)(1−γ)/2 and (ψ̃1τ,w− ψ̃1τ)(1+γ)/2, the Hall-type error bands

are given by

[ψ̃1τ − (ψ̃1τ,w− ψ̃1τ)(1+γ)/2; ψ̃1τ − (ψ̃1τ,w− ψ̃1τ)(1−γ)/2]. (12)

Note that the upper quantiles of the corrected distributions are used for

the calculation of the lower error band margins, and vice versa. This

“counter-acting swapping” serves to cancel out any bias of the estima-

tion procedure.

Of course the bootstrap procedure can be simultaneously applied to all periods in

the sample. However, we still do not get confidence “bands” because we cannot

condition on the entire sample and do valid inference. As with the delta method, we

can only derive valid confidence intervals for certain periods of interest.

8In order not to overload the notation, we do not formally distinguish here between the true
transitory component (true of course conditional on period-τ data) and its original point estimate,
because we hope it is clear from the context that only the estimate can be used here.
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4 The uncertainty of the Stock-Watson decomposi-

tion

4.1 Definition and representation of the SW decomposition

In a standard formulation, and assuming a fixed initial value, the permanent SW

components are given by

ypermaSW
t = y0 +Cµt +C

t

∑
s=1

εs, (13)

where C is the long-run moving-average impact matrix of reduced rank (which

however is not directly of interest here). For the cointegrated VAR model the SW

decomposition essentially yields the multivariate Beveridge-Nelson decomposition,

i.e. the permanent component is a multivariate random walk. In contrast, the per-

manent component of the GG decomposition is autocorrelated in differences. This

property of the SW decomposition implies an appealing interpretation: Given our

knowledge at time t, only the SW transitory component of the time series is ex-

pected to change in the future (because it is expected to converge to its unconditional

expectation, or in the demeaned case, to zero), so it is especially important for fore-

casting. Of course, the GG and SW permanent components only differ by stationary

terms and are cointegrated, therefore they share the same long-run features.

Again following Proietti (1997) and Hecq, Palm, and Urbain (2000) the transi-

tory SW component can be written as the sum of two terms,

ytransSW
t = ψ1t +ψ2t , (14)

where the part ψ1t represents the error-correcting movements of the system and

is identical to the GG transitory component above, while the part ψ2t are the re-

maining transitory movements of the system which do not contribute to the long-run
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equilibrium. This latter part can be represented as a distributed lag of the observable

variables:

ψ2t =−(I−P)B−1
1αβ

B∗(L)∆yt (15)

This second part remains to be demeaned as well, which can be achieved by

using the known unconditional expectation of the differences:

E(∆yt) = (I−P)B−1
1αβ

µ (16)

Using the abbreviation µ∗ ≡ (I−P)B−1
1αβ

µ we can now write:

ψ̃2t = ψ2t−E(ψ2t)

= −(I−P)B−1
1αβ

B∗(L)(∆yt−µ
∗)

=
(
− [I−P]B−1

1αβ

)(
B∗0;−B∗0µ

∗;B∗1;−B∗1µ
∗; ...;B∗p−2;−B∗p−2µ

∗)×
(∆y′t ;1;∆y′t−1;1; . . . ;∆y′t−p+2;1)′ (17)

=
(
− [I−P]B−1

1αβ

)(
B∗0;B∗1; ...;B∗p−2;−B∗(1)µ∗

)
×

(∆y′t ;∆y′t−1; . . . ;∆y′t−p+2;1)′

= S1S2
(
∆yt ;∆yt−1; · · · ;∆yt−p+2;1

)′
Then combining the two parts we have for the SW transitory component:

ψ̃t = ψ̃1t + ψ̃2t

=
(

P;− [I−P]B−1
1αβ

[
B∗0;B∗1; ...;B∗p−2

]
;sµ

)
× (18)

(∆y′t ;∆y′t−1; . . . ;∆y′t−p+2;1)′

≡ S(∆y′t ;∆y′t−1; . . . ;∆y′t−p+2;1)′,
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where the last element relating to the constant term is given by

sµ =
(

B−1
1αβ

α[β ′B−1
1αβ

α]−1[β ′B−1
1αβ

α]−1
β
′+[I−P]B−1

1αβ
B∗(1) [I−P]

)
B−1

1αβ
µ.

(19)

Note that also for the SW transitory component it is known how to test the

hypothesis that it vanishes for a certain variable. In addition to the zero row of α that

was needed for the vanishing GG component, here the i-th rows of the various short-

run coefficient matrices would also have to be zero. These restrictions essentially

mean that the variable would be a strongly exogenous random walk. Again, for a

given cointegration rank and super-consistently estimated cointegration coefficients,

this is a standard test problem.

4.2 The Delta method for the SW decomposition

The calculation of the uncertainty for the SW transitory component is analogous

to the procedure for the GG component above. Again we can express the ψ̃τ (the

demeaned overall transitory components) in period τ ∈ {p, ...,T} as a function of k,

of the cointegration coefficients β , and of the data; the only difference now is that

we have to condition on the lagged values as well, yτ , ...,yτ−p+1:

ψ̃τ = fSW (k;β ,yτ , ...,yτ−p+1) (20)

The function fSW is again given by the derivations of the the transitory com-

ponents above. Let JSW be the Jacobian matrix of that function. We can state the

estimation uncertainty of ψ̃τ similar to the one of the GG decomposition in propo-

sition 1.

Proposition 2. The conditional asymptotic distribution of the SW transitory com-
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ponent estimator is given by:

√
T ( ˆ̃ψτ − ψ̃τ) → N(0,JSW ΩJ

′
SW ) (21)

Proof. Again the result follows directly from applying the delta method, cf. the re-

marks on proposition 1, where now the conditioning data are given by yτ , ...,yτ−p+1.

The influence of these data on the actual estimates is either non-existent (if appro-

priate dummies have been used in estimating the system), or under assumption 4 it

is asymptotically vanishing.

As before, we can use the fact that the conditioning data are just a linear factor

post-multiplied to S. Using the abbreviation y′cond,t = (∆y′t ;∆y′t−1; . . . ;∆y′t−p+2;1),

if we are interested in the i-th element of the transitory component we can use

the i-th row of S: ψ̃τ,i = s
′
iycond,τ . This row is obviously also a function of the

underlying coefficients, but not of the data: si = fs,i(k;β ). We define the Jacobian

of the function fs,i as Js,i, and like in the GG case we directly express the variance

of the estimated i-th transitory component in an analogous corollary.

Corollary 2. The variance of the SW transitory component estimator for a certain

variable in a certain period is given by:

Var( ˆ̃ψτ,i) = y
′
cond,τJs,iΩJ

′
s,iycond,τ (22)

Again, since Js,i is not a function of the data we only have to perform between 1

and n Jacobian computations (depending on how many variables we are interested

in) instead of T − p. Nevertheless this approach is still just a computational con-

venience device, because the interpretation remains only valid for a single chosen

period.
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4.3 The bootstrap method for the SW component

The bootstrap method in this case is completely analogous to the GG case and to

save space we will not repeat the details of the algorithm here. Essentially, the

distribution of the G coefficients is replaced by that of the S coefficients, and of

course the transitory component must be constructed using the extended data vector

ycond,t which includes lags, according to the formulas in section 4.1.

5 Illustration

For an illustration of how the methods work in practice we use a three-variable

dataset inspired by the influential King, Plosser, Stock, and Watson (1991, KPSW)

article dealing with stochastic trends in US business-cycle analysis. That is, we also

use the quarterly variables (logs of) real consumption const , real (gross) investment

invt , and real output inct , but instead of their sample 1947-1988 we analyze more

recent data spanning 1968q1-2010q2. We also let the series be tied together by

two cointegrating relationships (r = 2), such that any two of the three variables are

cointegrated. KPSW propose to specify the cointegrating relationships according to

economic theory as the “great ratios” of balanced growth, specifically cons− inc and

inv− inc, but for the purposes of this illustration we will work with freely estimated

cointegration coefficients β .9 No exogenous terms are included in the cointegration

space, and the constant term is unrestricted to account for the deterministic long-

run growth trend. The standard choice of four lags (p = 4) for quarterly data is also

reasonable here.

For the transitory components we focus on the output gap; figure 1 shows the

point estimates of the transitory components of both decompositions, GG and SW.

Both estimates seem quite similar for this data –apart from fluctuations of the SW

9These great ratios are actually not so great in terms of their stationarity properties in the sub-
sample after the publication of KPSW. This is another reason to freely estimate the cointegration
coefficients instead of imposing unit values.
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gap measure in the very short run– which may suggest the presence of common

cyclical features (Proietti, 1997). The great recession of 2008-2010 is clearly vis-

ible as a large drop in the output gap. In general we note that a falling output gap

measure (equivalent to a rising output gap in economic terms, since a positive mea-

sure indicates excess output) corresponds quite well to the NBER dating of the US

recessions.

Before turning to the estimation uncertainty of the transitory components in spe-

cific periods it may be useful to briefly test whether the transitory output component

is at all significant in this system. For the GG transitory component this check can

be directly implemented as the standard test of the null hypothesis of a zero row

in α for the output equation. In our illustration here, this test yields the following

result: P(χ2(2)>11.19) = 0.0037, and thus the GG output gap is clearly significant

in general, over the entire sample. Obviously, this finding automatically implies

the significance of the SW output gap, since having a row of zeroes in α is also a

necessary (but not sufficient) condition for a vanishing SW transitory component.

In the next step we calculate the confidence intervals for the output gap as given

by the GG decomposition, shown in figure 2. All intervals have a nominal asymp-

totic coverage of 90%, and we have employed the described computational shortcut

where the observation on which we condition is still included in the estimation sam-

ple, but its influence should be negligible compared to the rest of the sample. For

the bootstraps we resample from the estimated residuals.

First of all we notice that for most periods the intervals are quite similar. How-

ever, there are some exceptions; around 2005 for example the delta method intervals

are tighter than their bootstrapped counterparts. And in the final observations for

2010 the Hall-type bootstrap intervals are shifted upwards somewhat in comparison

to the naive bootstrap intervals (as well as compared to the delta method intervals,

which are of course symmetric around the respective point estimates of the gap). Fi-

nally, whether the confidence intervals in general should be perceived as relatively
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Figure 1: Estimated output gaps as transitory components of the GG and SW
permanent-transitory decompositions. Shaded areas indicate NBER recession dat-
ing.

wide or tight is probably a matter of taste. Nevertheless, while for the latest obser-

vation(s) the interval is quite wide indeed, the output gap is still highly significantly

different from zero.

Finally, figure 3 displays the corresponding measures and calculations for the

SW decomposition of the output series in the cointegrated system. Similar remarks

as before apply concerning the comparison of the three different interval “series”.

The most interesting difference with respect to the GG-based graph relates to the

latest observation (2010q2): Given the considerably lower point estimate of the SW-

based output gap (in absolute value) together with a comparably wide confidence

interval, the latest observed output gap is not significantly different from zero under

the SW decomposition.
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Figure 2: GG decomposition, confidence intervals for the output gap; displayed to-
gether for all periods in the sample for convenience, while the interpretation should
be for a single period only.
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Figure 3: SW decomposition, confidence intervals for the output gap; displayed to-
gether for all periods in the sample for convenience, while the interpretation should
be for a single period only.
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6 Summary

While a permanent-transitory decomposition of non-stationary time series in a coin-

tegrated system can always be mechanically calculated, it is not a priori clear if the

resulting transitory component for a period of interest is significantly different from

zero, given the sampling uncertainty of the estimated coefficients. So far it has only

been possible to test the overall significance of the transitory components for the en-

tire sample. In that sense even the sign of the transitory component in the period of

interest cannot be fully established, which may be problematic for many economic

applications.

Therefore, we have proposed an additional approach to assess the sampling un-

certainty of widespread permanent-transitory decompositions, where we take as

given the data constellations that are observed at the period of interest (possibly

the latest observation period available). These measures provide additional infor-

mation compared to the standard overall test results. For this conditional approach

we have derived one delta-method and two bootstrap-based ways to quantify the

estimation uncertainty of the Stock-Watson (common-trends-based) and Gonzalo-

Granger (common-factor-based) decompositions.

In the empirical illustration we calculated the uncertainty of output gap esti-

mates for the US. For example, at the 10% significance level (90% nominal cover-

age of the confidence intervals) it turned out that for the latest available observation

(2010q2) the GG-based output gap is significantly different from zero, whereas the

SW-based gap estimate is not.

References

BOSWIJK, H. P., AND J. A. DOORNIK (2004): “Identifying, estimating and test-
ing restricted cointegrated systems: An overview,” Statistica Neerlandica, 58(4),
440–465.

21



COTTRELL, A., AND R. LUCCHETTI (2010): Gretl User’s Guide Version 1.9; avail-
able at http://gretl.sourceforge.net/#man.

GONZALO, J., AND C. GRANGER (1995): “Estimation of Common Long-Memory
Components in Cointegrated Systems,” Journal of Business and Economics

Statistics, 13(1), 27–35.

HARVEY, A. C., AND T. PROIETTI (eds.) (2005): Readings in Unobserved Com-

ponents Models. Oxford University Press.

HARVEY, A. C., AND N. G. SHEPHARD (1993): “Structural Time Series Models,”
in Handbook of Statistics, ed. by G. S. Maddala, C. R. Rao, and H. D. Vinod, vol.
11 (Econometrics). North-Holland.

HECQ, A., F. C. PALM, AND J.-P. URBAIN (2000): “Permanent-transitory De-
composition in VAR Models with Cointegration and Common Cycles,” Oxford

Bulletin of Economics and Statistics, 62(4), 511–532.

KING, R. G., C. I. PLOSSER, J. H. STOCK, AND M. W. WATSON (1991):
“Stochastic Trends and Economic Fluctuations,” American Economic Review,
81(4), 819–840.

PARUOLO, P. (1997): “Asymptotic inference on the moving average impact matrix
in cointegrated I(1) VAR systems,” Econometric Theory, 13, 79–118.

PROIETTI, T. (1997): “Short-Run Dynamics in Cointegrated Systems,” Oxford Bul-

letin of Economics and Statistics, 59(3), 405–422.

SIMS, C. A., AND T. ZHA (1999): “Error Bands For Impulse Responses,” Econo-

metrica, 67(5), 1113–1155.

STOCK, J. H., AND M. W. WATSON (1988): “Testing for Common Trends,” Jour-

nal of the American Statistical Association, 83, 1097–1107.

22



 

Publisher: Hans-Böckler-Stiftung, Hans-Böckler-Str. 39, 40476 Düsseldorf, Germany 
Phone: +49-211-7778-331, IMK@boeckler.de, http://www.imk-boeckler.de  
 
IMK Working Paper is an online publication series available at:   
http://www.boeckler.de/cps/rde/xchg/hbs/hs.xls/31939.html
 
ISSN: 1861-2199 
 
The views expressed in this paper do not necessarily reflect those of the IMK or the Hans-Böckler-Foundation. 
 
All rights reserved. Reproduction for educational and non-commercial purposes is permitted provided that  
the source is acknowledged. 

mailto:IMK@boeckler.de
http://www.imk-boeckler.de/

